-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_model_authentication.py
190 lines (180 loc) · 4.82 KB
/
train_model_authentication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import tensorflow as tf
import sys
from model.model_authentication import ModelAuthentication
from util.utils import str2bool
# date le feature distanza euclidea (output arrray con gallery, probe, distance, same_user(0,1), same_activity(0,1))
parser = argparse.ArgumentParser(description = "Parameter to train and evaluate autentication")
parser.add_argument(
'-path_data',
'--path_data',
type=str,
help='Path to read data',
default=''
)
parser.add_argument(
'-path_out',
'--path_out',
type=str,
help='Path to store result about authentication: features, distances and eer',
required=True
)
parser.add_argument(
'-name_dataset',
'--name_dataset',
type=str,
help='Name used for sub-dir in saved model directory',
)
parser.add_argument(
'-name_model',
'--name_model',
type=str,
help='Name of the model to save'
)
parser.add_argument(
'-train_classifier',
'--train_classifier',
type=str2bool,
default=False,
help='Train or not feature extractor'
)
parser.add_argument(
'-gyroscope',
'--gyroscope',
type=str2bool,
default=False,
help='Use or not gyroscope data'
)
parser.add_argument(
'-magnetometer',
'--magnetometer',
type=str2bool,
default=False,
help='Use or not magnetometer data'
)
parser.add_argument(
'-generate_features',
'--generate_features',
type=str2bool,
default=False,
help='Generate feature from subset user of authentication'
)
parser.add_argument(
'-compute_distance',
'--compute_distance',
type=str2bool,
default=False,
help='Compute distance between features of gallery and probe'
)
parser.add_argument(
'-compute_eer',
'--compute_eer',
type=str2bool,
default=False,
help='Compute eer based on distance files'
)
parser.add_argument(
'-action_dependent',
'--action_dependent',
type=str2bool,
default=False,
help='Comupte eer based on action or not'
)
parser.add_argument(
'-log_train',
'--log_train',
type=str2bool,
default=False
)
parser.add_argument(
'-split_gallery_probe',
'--split_gallery_probe',
type=str,
choices=['random', 'intra_session', 'extra_session'],
help='intra_session: half of session for gallery and half for probe (time sorted),\nextra_session: session 1 for gallery and session 2 for probe,\nrandom: random between session'
)
parser.add_argument(
'-colab_path',
'--colab_path',
type=str,
default=''
)
parser.add_argument(
'-augment_data',
'--augment_data',
type=str2bool,
default=False
)
parser.add_argument(
'-load_model',
'--load_model',
type=str2bool,
default=False
)
parser.add_argument(
'-overlap',
'--overlap',
type=float
)
parser.add_argument(
'-method',
'--method',
type=str,
choices=['window_based', 'cycle_based'],
default='',
help='Based on preprocessing method delete overlapping between train and test (window_based) or not (cycle_based)'
)
parser.add_argument(
'-split_method',
'--split_method',
type=str,
default='',
help='If paper: 8 sample for train, and rest for val; if standard: 70 percentage for train and rest for val'
)
args = parser.parse_args()
# GPU settings
gpus = tf.config.list_physical_devices("GPU")
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
path_data = args.path_data
path_out = args.path_out
name_dataset = args.name_dataset
name_model = args.name_model
train_classifier = args.train_classifier
generate_features = args.generate_features
compute_distance = args.compute_distance
compute_eer = args.compute_eer
action_dependent = args.action_dependent
split_gallery_probe = args.split_gallery_probe
colab_path = args.colab_path
augment_data = args.augment_data
load_model = args.load_model
overlap = args.overlap
method = args.method
split_method = args.split_method
gyroscope = args.gyroscope
magnetometer = args.magnetometer
log = args.log_train
if train_classifier:
if method == 'cycle_based' and split_method == '':
sys.exit('For train classifier method (cycle_based) split (standard or paper) must be defined')
model = ModelAuthentication(path_data, path_out, name_dataset, name_model, overlap, colab_path)
if train_classifier:
model.load_data(gyroscope, magnetometer)
model.split_user()
model.split_train_test_classifier(split_method, method)
if augment_data:
model.augment_train_data()
model.normalize_data()
model.create_dataset_classifier()
model.build_model()
model.loss_opt_metric()
model.train_model(log)
model.save_model()
if generate_features:
model.generate_features(split_gallery_probe)
if compute_distance:
model.compute_distance_gallery_probe(split_gallery_probe, action_dependent)
if compute_eer:
model.compute_eer(split_gallery_probe, action_dependent)