forked from MG2033/A2C
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·209 lines (173 loc) · 9.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import time
import numpy as np
from tqdm import tqdm
from base_train import BaseTrainer
from envs.env_summary_logger import EnvSummaryLogger
from utils.lr_decay import LearningRateDecay
from utils.utils import create_list_dirs
class Trainer(BaseTrainer):
def __init__(self, sess, model, r_discount_factor=0.99,
lr_decay_method='linear', args=None):
super().__init__(sess, model, args)
self.save_every = 20000
self.sess = sess
self.num_steps = self.model.num_steps
self.cur_iteration = 0
self.global_time_step = 0
self.observation_s = None
self.states = None
self.dones = None
self.env = None
self.num_iterations = int(self.args.num_iterations)
self.gamma = r_discount_factor
self.learning_rate_decayed = LearningRateDecay(v=self.args.learning_rate,
nvalues=self.num_iterations * self.args.unroll_time_steps * self.args.num_envs,
lr_decay_method=lr_decay_method)
self.env_summary_logger = EnvSummaryLogger(sess,
create_list_dirs(self.args.summary_dir, 'env', self.args.num_envs))
def train(self, env):
self._init_model()
self._load_model()
self.env = env
self.observation_s = np.zeros(
(env.num_envs, self.model.img_height, self.model.img_width, self.model.num_classes * self.model.num_stack),
dtype=np.uint8)
self.observation_s = self.__observation_update(self.env.reset(), self.observation_s)
self.states = self.model.step_policy.initial_state
self.dones = [False for _ in range(self.env.num_envs)]
tstart = time.time()
loss_list = np.zeros(100, )
policy_entropy_list = np.zeros(100, )
fps_list = np.zeros(100, )
arr_idx = 0
start_iteration = self.global_step_tensor.eval(self.sess)
self.global_time_step = self.global_time_step_tensor.eval(self.sess)
for iteration in tqdm(range(start_iteration, self.num_iterations + 1, 1), initial=start_iteration,
total=self.num_iterations):
self.cur_iteration = iteration
obs, states, rewards, masks, actions, values = self.__rollout()
loss, policy_loss, value_loss, policy_entropy = self.__rollout_update(obs, states, rewards, masks, actions,
values)
# Calculate and Summarize
loss_list[arr_idx] = loss
nseconds = time.time() - tstart
fps_list[arr_idx] = int((iteration * self.num_steps * self.env.num_envs) / nseconds)
policy_entropy_list[arr_idx] = policy_entropy
# Update the Global step
self.global_step_assign_op.eval(session=self.sess, feed_dict={
self.global_step_input: self.global_step_tensor.eval(self.sess) + 1})
arr_idx += 1
if not arr_idx % 100:
mean_loss = np.mean(loss_list)
mean_fps = np.mean(fps_list)
mean_pe = np.mean(policy_entropy_list)
print('Iteration:' + str(iteration) + ' - loss: ' + str(mean_loss)[:8] + ' - policy_entropy: ' + str(
mean_pe)[:8] + ' - fps: ' + str(mean_fps))
arr_idx = 0
if iteration % self.save_every == 0:
self.save()
self.env.close()
def test(self, total_timesteps, env):
self._init_model()
self._load_model()
states = self.model.step_policy.initial_state
dones = [False for _ in range(env.num_envs)]
observation_s = np.zeros(
(env.num_envs, self.model.img_height, self.model.img_width,
self.model.num_classes * self.model.num_stack),
dtype=np.uint8)
observation_s = self.__observation_update(env.reset(), observation_s)
for _ in tqdm(range(total_timesteps)):
actions, values, states = self.model.step_policy.step(observation_s, states, dones)
observation, rewards, dones, _ = env.step(actions)
for n, done in enumerate(dones):
if done:
observation_s[n] *= 0
observation_s = self.__observation_update(observation, observation_s)
env.close()
def __rollout_update(self, observations, states, rewards, masks, actions, values):
# Updates the model per trajectory for using parallel environments. Uses the train_policy.
advantages = rewards - values
for step in range(len(observations)):
current_learning_rate = self.learning_rate_decayed.value()
feed_dict = {self.model.train_policy.X_input: observations, self.model.actions: actions,
self.model.advantage: advantages,
self.model.reward: rewards, self.model.learning_rate: current_learning_rate,
self.model.is_training: True}
if states != []:
# Leave it for now. It's for LSTM policy.
feed_dict[self.model.S] = states
feed_dict[self.model.M] = masks
loss, policy_loss, value_loss, policy_entropy, _ = self.sess.run(
[self.model.loss, self.model.policy_gradient_loss, self.model.value_function_loss, self.model.entropy,
self.model.optimize],
feed_dict
)
return loss, policy_loss, value_loss, policy_entropy
def __observation_update(self, new_observation, old_observation):
# Do frame-stacking here instead of the FrameStack wrapper to reduce IPC overhead
updated_observation = np.roll(old_observation, shift=-1, axis=3)
updated_observation[:, :, :, -1] = new_observation[:, :, :, 0]
return updated_observation
def __discount_with_dones(self, rewards, dones, gamma):
discounted = []
r = 0
# Start from downwards to upwards like Bellman backup operation.
for reward, done in zip(rewards[::-1], dones[::-1]):
r = reward + gamma * r * (1. - done) # fixed off by one bug
discounted.append(r)
return discounted[::-1]
def __rollout(self):
train_input_shape = (self.model.train_batch_size, self.model.img_height, self.model.img_width,
self.model.num_classes * self.model.num_stack)
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [], [], [], [], []
mb_states = self.states
for n in range(self.num_steps):
# Choose an action based on the current observation
actions, values, states = self.model.step_policy.step(self.observation_s, self.states, self.dones)
# Actions, Values predicted across all parallel environments
mb_obs.append(np.copy(self.observation_s))
mb_actions.append(actions)
mb_values.append(values)
mb_dones.append(self.dones)
# Take a step in the real environment
observation, rewards, dones, info = self.env.step(actions)
# plt.imsave(fname="img" + str(n) + ".png", arr=observation[0, :, :, 0], cmap='gray')
# Tensorboard dump, divided by 100 to rescale (to make the steps make sense)
self.env_summary_logger.add_summary_all(int(self.global_time_step / 100), info)
self.global_time_step += 1
self.global_time_step_assign_op.eval(session=self.sess, feed_dict={
self.global_time_step_input: self.global_time_step})
# States and Masks are for LSTM Policy
self.states = states
self.dones = dones
for n, done in enumerate(dones):
if done:
self.observation_s[n] *= 0
self.observation_s = self.__observation_update(observation, self.observation_s)
mb_rewards.append(rewards)
mb_dones.append(self.dones)
# Conversion from (time_steps, num_envs) to (num_envs, time_steps)
mb_obs = np.asarray(mb_obs, dtype=np.uint8).swapaxes(1, 0).reshape(train_input_shape)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0)
mb_actions = np.asarray(mb_actions, dtype=np.int32).swapaxes(1, 0)
mb_values = np.asarray(mb_values, dtype=np.float32).swapaxes(1, 0)
mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0)
mb_masks = mb_dones[:, :-1]
mb_dones = mb_dones[:, 1:]
last_values = self.model.step_policy.value(self.observation_s, self.states, self.dones).tolist()
# Discount/bootstrap off value fn in all parallel environments
for n, (rewards, dones, value) in enumerate(zip(mb_rewards, mb_dones, last_values)):
rewards = rewards.tolist()
dones = dones.tolist()
if dones[-1] == 0:
rewards = self.__discount_with_dones(rewards + [value], dones + [0], self.gamma)[:-1]
else:
rewards = self.__discount_with_dones(rewards, dones, self.gamma)
mb_rewards[n] = rewards
# Instead of (num_envs, time_steps). Make them num_envs*time_steps.
mb_rewards = mb_rewards.flatten()
mb_actions = mb_actions.flatten()
mb_values = mb_values.flatten()
mb_masks = mb_masks.flatten()
return mb_obs, mb_states, mb_rewards, mb_masks, mb_actions, mb_values