You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi all,
calculating derivates wrt to the ode parameters of a gpu ensemble of odes fails when the parameters are a CuArray. Solvign the odes works, also ebverything works on the CPU and if the parameters are "normal" Array. It seems that julia or aone of the packages thinks that the paramters hould a an Array and not a a CuArray. For may aplication I need trhe parameters to be a CuArray, they are the outcome of compute heavy calculation on the GPU.
Anyone an idea how to fix this?
Here, a minmal example:
`import Pkg
using DiffEqGPU, CUDA, OrdinaryDiffEq, Zygote, SciMLSensitivity
first few lines of the error messages, remiander appended
ERROR: LoadError: GPU compilation of MethodInstance for (::GPUArrays.var"#broadcast_kernel#26")(::CUDA.CuKernelContext, ::CuDeviceVector{Float32, 1}, ::Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{1}, Tuple{Base.OneTo{Int64}}, typeof(Zygote.accum), Tuple{Base.Broadcast.Extruded{CuDeviceVector{Float32, 1}, Tuple{Bool}, Tuple{Int64}}, Base.Broadcast.Extruded{Vector{Float32}, Tuple{Bool}, Tuple{Int64}}}}, ::Int64) failed
KernelError: passing and using non-bitstype argument
Argument 4 to your kernel function is of type Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{1}, Tuple{Base.OneTo{Int64}}, typeof(Zygote.accum), Tuple{Base.Broadcast.Extruded{CuDeviceVector{Float32, 1}, Tuple{Bool}, Tuple{Int64}}, Base.Broadcast.Extruded{Vector{Float32}, Tuple{Bool}, Tuple{Int64}}}}, which is not isbits:
.args is of type Tuple{Base.Broadcast.Extruded{CuDeviceVector{Float32, 1}, Tuple{Bool}, Tuple{Int64}}, Base.Broadcast.Extruded{Vector{Float32}, Tuple{Bool}, Tuple{Int64}}} which is not isbits.
.2 is of type Base.Broadcast.Extruded{Vector{Float32}, Tuple{Bool}, Tuple{Int64}} which is not isbits.
.x is of type Vector{Float32} which is not isbits.
Hi all,
calculating derivates wrt to the ode parameters of a gpu ensemble of odes fails when the parameters are a CuArray. Solvign the odes works, also ebverything works on the CPU and if the parameters are "normal" Array. It seems that julia or aone of the packages thinks that the paramters hould a an Array and not a a CuArray. For may aplication I need trhe parameters to be a CuArray, they are the outcome of compute heavy calculation on the GPU.
Anyone an idea how to fix this?
Here, a minmal example:
`import Pkg
using DiffEqGPU, CUDA, OrdinaryDiffEq, Zygote, SciMLSensitivity
function lorenz!(du, u, p, t)
σ = p[1]
ρ = p[2]
β = p[3]
du[1] = σ * (u[2] - u[1])
du[2] = u[1] * (ρ - u[3]) - u[2]
du[3] = u[1] * u[2] - β * u[3]
return du
end
u0 = cu([[1.0f0; 0.0f0; 0.0f0] [1.0f0; 0.0f0; 0.0f0]])
tspan = (0.0f0, 10.0f0)
p =cu([[10.0f0, 28.0f0, 8 / 3.0f0] [10.0f0, 28.0f0, 8 / 3.0f0]])
prob = ODEProblem(lorenz!,
cu([0.0f0; 0.0f0; 0.0f0]),
tspan,
cu([0.0f0; 0.0f0; 0.0f0]))
function func(params, initialU)
prob_func = (prob, i, repeat) -> remake(prob, p=params[:,i], u0=initialU[:, i])
monteprob = EnsembleProblem(prob, prob_func=prob_func, safetycopy=false)
solve(monteprob,
Tsit5(),
EnsembleGPUArray(0.0),
trajectories=2,
saveat=1.0f0,
sensealg=ForwardDiffSensitivity())
end
print(func(p, u0)) #Works
print(Zygote.jacobian(params -> func(params, u0), p)) #fails if p is a CUDA array`
My envioroment, julia 1.9.0:
[052768ef] CUDA v4.4.0
[071ae1c0] DiffEqGPU v2.4.1
[1dea7af3] OrdinaryDiffEq v6.53.4
[1ed8b502] SciMLSensitivity v7.36.0
[e88e6eb3] Zygote v0.6.63
first few lines of the error messages, remiander appended
ERROR: LoadError: GPU compilation of MethodInstance for (::GPUArrays.var"#broadcast_kernel#26")(::CUDA.CuKernelContext, ::CuDeviceVector{Float32, 1}, ::Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{1}, Tuple{Base.OneTo{Int64}}, typeof(Zygote.accum), Tuple{Base.Broadcast.Extruded{CuDeviceVector{Float32, 1}, Tuple{Bool}, Tuple{Int64}}, Base.Broadcast.Extruded{Vector{Float32}, Tuple{Bool}, Tuple{Int64}}}}, ::Int64) failed
KernelError: passing and using non-bitstype argument
Argument 4 to your kernel function is of type Base.Broadcast.Broadcasted{CUDA.CuArrayStyle{1}, Tuple{Base.OneTo{Int64}}, typeof(Zygote.accum), Tuple{Base.Broadcast.Extruded{CuDeviceVector{Float32, 1}, Tuple{Bool}, Tuple{Int64}}, Base.Broadcast.Extruded{Vector{Float32}, Tuple{Bool}, Tuple{Int64}}}}, which is not isbits:
.args is of type Tuple{Base.Broadcast.Extruded{CuDeviceVector{Float32, 1}, Tuple{Bool}, Tuple{Int64}}, Base.Broadcast.Extruded{Vector{Float32}, Tuple{Bool}, Tuple{Int64}}} which is not isbits.
.2 is of type Base.Broadcast.Extruded{Vector{Float32}, Tuple{Bool}, Tuple{Int64}} which is not isbits.
.x is of type Vector{Float32} which is not isbits.
jac_error_gpu.txt
The text was updated successfully, but these errors were encountered: