@@ -645,10 +645,11 @@ function SciMLBase.symbolic_discretize(pde_system::PDESystem,
645
645
end
646
646
647
647
pinnrep. loss_functions = PINNLossFunctions (bc_loss_functions, pde_loss_functions,
648
- full_likelihood_function, additional_loss,
649
- datafree_pde_loss_functions,
650
- datafree_bc_loss_functions)
648
+ full_likelihood_function, additional_loss,
649
+ datafree_pde_loss_functions,
650
+ datafree_bc_loss_functions)
651
651
else
652
+
652
653
function full_loss_function (θ, p)
653
654
# the aggregation happens on cpu even if the losses are gpu, probably fine since it's only a few of them
654
655
pde_losses = [pde_loss_function (θ) for pde_loss_function in pde_loss_functions]
@@ -719,18 +720,16 @@ function SciMLBase.symbolic_discretize(pde_system::PDESystem,
719
720
logvector (pinnrep. logger, adaloss. bc_loss_weights,
720
721
" adaptive_loss/bc_loss_weights" ,
721
722
iteration[1 ])
722
- end
723
+ end end
723
724
724
- return full_weighted_loss
725
- end
726
-
727
- pinnrep. loss_functions = PINNLossFunctions (bc_loss_functions, pde_loss_functions,
725
+ return full_weighted_loss
726
+ end
727
+
728
+ pinnrep. loss_functions = PINNLossFunctions (bc_loss_functions, pde_loss_functions,
728
729
full_loss_function, additional_loss,
729
730
datafree_pde_loss_functions,
730
731
datafree_bc_loss_functions)
731
- end
732
732
end
733
-
734
733
return pinnrep
735
734
end
736
735
0 commit comments