diff --git a/test/NNPDE_tests_gpu.jl b/test/NNPDE_tests_gpu.jl index 8f33efe716..4a2896a84d 100644 --- a/test/NNPDE_tests_gpu.jl +++ b/test/NNPDE_tests_gpu.jl @@ -25,7 +25,7 @@ eq = Dθ(u(θ)) ~ θ^3 + 2.0f0 * θ + (θ^2) * ((1.0f0 + 3 * (θ^2)) / (1.0f0 + u(θ) * (θ + ((1.0f0 + 3.0f0 * (θ^2)) / (1.0f0 + θ + θ^3))) # Initial and boundary conditions -bcs = [u(0.0) ~ 1.0f0] +bcs = [u(0.f0) ~ 1.0f0] # Space and time domains domains = [θ ∈ Interval(0.0f0, 1.0f0)] @@ -85,7 +85,7 @@ chain = Flux.Chain(Dense(2, inner, Flux.σ), Dense(inner, inner, Flux.σ), Dense(inner, inner, Flux.σ), Dense(inner, inner, Flux.σ), - Dense(inner, 1)) |> gpu + Dense(inner, 1)) |> gpu |> f64 strategy = NeuralPDE.StochasticTraining(500) discretization = NeuralPDE.PhysicsInformedNN(chain, @@ -138,7 +138,7 @@ chain = Flux.Chain(Dense(2, inner, Flux.σ), Dense(inner, inner, Flux.σ), Dense(inner, inner, Flux.σ), Dense(inner, inner, Flux.σ), - Dense(inner, 1)) |> gpu + Dense(inner, 1)) |> gpu |> f64 strategy = NeuralPDE.QuasiRandomTraining(500; #points sampling_alg = SobolSample(), @@ -205,7 +205,7 @@ chain = Flux.Chain(Dense(3, inner, Flux.σ), Dense(inner, inner, Flux.σ), Dense(inner, inner, Flux.σ), Dense(inner, inner, Flux.σ), - Dense(inner, 1)) |> gpu + Dense(inner, 1)) |> gpu |> f64 strategy = NeuralPDE.GridTraining(0.05) discretization = NeuralPDE.PhysicsInformedNN(chain, diff --git a/test/NNPDE_tests_gpu_Lux.jl b/test/NNPDE_tests_gpu_Lux.jl index 6055673a73..6dfbe3aac1 100644 --- a/test/NNPDE_tests_gpu_Lux.jl +++ b/test/NNPDE_tests_gpu_Lux.jl @@ -1,7 +1,7 @@ using Lux, ComponentArrays, OptimizationOptimisers using Test, NeuralPDE using Optimization -using CUDA, QuasiMonteCarlo +using LuxCUDA, QuasiMonteCarlo import ModelingToolkit: Interval, infimum, supremum using Random @@ -12,7 +12,7 @@ callback = function (p, l) return false end CUDA.allowscalar(false) -#const gpuones = cu(ones(1)) +const gpud = gpu_device() ## ODE println("ode") @@ -41,7 +41,7 @@ chain = Chain(Dense(1, inner, Lux.σ), Dense(inner, 1)) strategy = NeuralPDE.GridTraining(dt) -ps = Lux.setup(Random.default_rng(), chain)[1] |> ComponentArray |> gpu .|> Float64 +ps = Lux.setup(Random.default_rng(), chain)[1] |> ComponentArray |> gpud discretization = NeuralPDE.PhysicsInformedNN(chain, strategy; init_params = ps) @@ -90,7 +90,7 @@ chain = Lux.Chain(Dense(2, inner, Lux.σ), Dense(inner, 1)) strategy = NeuralPDE.StochasticTraining(500) -ps = Lux.setup(Random.default_rng(), chain)[1] |> ComponentArray |> gpu .|> Float64 +ps = Lux.setup(Random.default_rng(), chain)[1] |> ComponentArray |> gpud .|> Float64 discretization = NeuralPDE.PhysicsInformedNN(chain, strategy; init_params = ps) @@ -148,7 +148,7 @@ strategy = NeuralPDE.QuasiRandomTraining(500; #points sampling_alg = SobolSample(), resampling = false, minibatch = 30) -ps = Lux.setup(Random.default_rng(), chain)[1] |> ComponentArray |> gpu .|> Float64 +ps = Lux.setup(Random.default_rng(), chain)[1] |> ComponentArray |> gpud .|> Float64 discretization = NeuralPDE.PhysicsInformedNN(chain, strategy; init_params = ps) @@ -213,7 +213,7 @@ chain = Lux.Chain(Dense(3, inner, Lux.σ), Dense(inner, 1)) strategy = NeuralPDE.GridTraining(0.05) -ps = Lux.setup(Random.default_rng(), chain)[1] |> ComponentArray |> gpu .|> Float64 +ps = Lux.setup(Random.default_rng(), chain)[1] |> ComponentArray |> gpud .|> Float64 discretization = NeuralPDE.PhysicsInformedNN(chain, strategy; init_params = ps)