Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rosenbrock Methods fail when using InterpolatingAdjoint with checkpointing #1075

Open
m-bossart opened this issue Jul 3, 2024 · 0 comments
Labels

Comments

@m-bossart
Copy link
Contributor

Describe the bug 🐞

The sensitivity for an ODE solve using a Rosenbrock method fails with either sensealg = InterpolatingAdjoint(checkpointing=true) or sensealg = GaussAdjoint(checkpointing=true)

Expected behavior

I expect the combination of options to be compatible; the bug is related to the first call to the time gradient (which is why it only fails for the Rosenbrock methods).

Minimal Reproducible Example 👇

using Zygote, SciMLSensitivity
using OrdinaryDiffEq, Enzyme, Test
p = rand(3)
function dudt(u, p, t)
    u .* p
end
function loss(p)
    prob = ODEProblem(dudt, [3.0, 2.0, 1.0], (0.0, 1.0), p)
    sol = solve(prob, Rodas5(), dt = 0.01, saveat = 0.1, abstol = 1e-5, reltol = 1e-5)
    sum(abs2, Array(sol))
end
dp = Zygote.gradient(loss, p)[1]

function loss(p, solver, sensealg)
    prob = ODEProblem(dudt, [3.0, 2.0, 1.0], (0.0, 1.0), p)
    sol = solve(prob, solver, dt = 0.01, saveat = 0.1, sensealg = sensealg,
        abstol = 1e-5, reltol = 1e-5)
    sum(abs2, Array(sol))
end

dp1 = Zygote.gradient(p -> loss(p, Tsit5(), InterpolatingAdjoint()), p)[1]
dp2 = Zygote.gradient(p -> loss(p, Tsit5(), InterpolatingAdjoint(checkpointing = true)), p)[1]
dp3 = Zygote.gradient(p -> loss(p, Rodas4(), InterpolatingAdjoint()), p)[1]
dp4 = Zygote.gradient(p -> loss(p, Rodas4(), InterpolatingAdjoint(checkpointing = true)), p)[1]  #FAILS: ERROR: First call to automatic differentiation for time gradient failed.
dp5 = Zygote.gradient(p -> loss(p, Rodas4(), BacksolveAdjoint()), p)[1]
dp6 = Zygote.gradient(p -> loss(p, Rodas4(), BacksolveAdjoint(checkpointing = true)), p)[1]
dp7 = Zygote.gradient(p -> loss(p, Rodas4(), GaussAdjoint()), p)[1]
dp8 = Zygote.gradient(p -> loss(p, Rodas4(), GaussAdjoint(checkpointing = true)), p)[1] #FAILS: ERROR: First call to automatic differentiation for time gradient failed.
dp9 = Zygote.gradient(p -> loss(p, Tsit5(), GaussAdjoint(checkpointing = true)), p)[1]

@test dpdp1 rtol=1e-2
@test dpdp2 rtol=1e-2
@test dpdp3 rtol=1e-2
@test dpdp5 rtol=1e-2
@test dpdp6 rtol=1e-2
@test dpdp7 rtol=1e-2
@test dpdp9 rtol=1e-2

Error & Stacktrace ⚠️

┌ Warning: Automatic AD choice of autojacvec failed in ODE adjoint, failing back to ODE adjoint + numerical vjp
└ @ SciMLSensitivity C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\sensitivity_interface.jl:396
ERROR: First call to automatic differentiation for time gradient
failed. This means that the user `f` function is not compatible
with automatic differentiation. Methods to fix this include:

1. Turn off automatic differentiation (e.g. Rosenbrock23() becomes
   Rosenbrock23(autodiff=false)). More details can be found at
   https://docs.sciml.ai/DiffEqDocs/stable/features/performance_overloads/
2. Improving the compatibility of `f` with ForwardDiff.jl automatic
   differentiation (using tools like PreallocationTools.jl). More details
   can be found at https://docs.sciml.ai/DiffEqDocs/stable/basics/faq/#Autodifferentiation-and-Dual-Numbers
3. Defining analytical Jacobians and time gradients. More details can be
   found at https://docs.sciml.ai/DiffEqDocs/stable/types/ode_types/#SciMLBase.ODEFunction

Note 1: this failure occurred inside of the time gradient function. These
time gradients are only required by Rosenbrock methods (`Rosenbrock23`,
`Rodas4`, etc.) are are done by automatic differentiation w.r.t. the
argument `t`. If your function is compatible with automatic differentiation
w.r.t. `u`, i.e. for Jacobian generation, another way to work around this
issue is to switch to a non-Rosenbrock method.

Note 2: turning off automatic differentiation tends to have a very minimal
performance impact (for this use case, because it's forward mode for a
square Jacobian. This is different from optimization gradient scenarios).
However, one should be careful as some methods are more sensitive to
accurate gradients than others. Specifically, Rodas methods like `Rodas4`
and `Rodas5P` require accurate Jacobians in order to have good convergence,
while many other methods like BDF (`QNDF`, `FBDF`), SDIRK (`KenCarp4`),
and Rosenbrock-W (`Rosenbrock23`) do not. Thus if using an algorithm which
is sensitive to autodiff and solving at a low tolerance, please change the
algorithm as well.

MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1})

Closest candidates are:
  (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat
   @ Base rounding.jl:207
  (::Type{T})(::T) where T<:Number
   @ Core boot.jl:792
  Float64(::IrrationalConstants.Twoπ)
   @ IrrationalConstants C:\Users\Matt Bossart\.julia\packages\IrrationalConstants\vp5v4\src\macro.jl:112
  ...

Stacktrace:
  [1] derivative!(df::Vector{…}, f::SciMLBase.TimeGradientWrapper{…}, x::Float64, fx::Vector{…}, integrator::OrdinaryDiffEq.ODEIntegrator{…}, grad_config::Vector{…})
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\derivative_wrappers.jl:97
  [2] calc_tderivative!(integrator::OrdinaryDiffEq.ODEIntegrator{…}, cache::OrdinaryDiffEq.Rodas4Cache{…}, dtd1::Float64, repeat_step::Bool)
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\derivative_utils.jl:33
  [3] calc_rosenbrock_differentiation!
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\derivative_utils.jl:818 [inlined]
  [4] perform_step!(integrator::OrdinaryDiffEq.ODEIntegrator{…}, cache::OrdinaryDiffEq.Rodas4Cache{…}, repeat_step::Bool)
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\perform_step\rosenbrock_perform_step.jl:1891
  [5] perform_step!
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\perform_step\rosenbrock_perform_step.jl:1856 [inlined]
  [6] solve!(integrator::OrdinaryDiffEq.ODEIntegrator{…})
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\solve.jl:557
  [7] #__solve#560
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\solve.jl:7 [inlined]
  [8] __solve
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\solve.jl:1 [inlined]
  [9] solve_call(_prob::ODEProblem{…}, args::Rodas4{…}; merge_callbacks::Bool, kwargshandle::Nothing, kwargs::@Kwargs{})
    @ DiffEqBase C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:612
 [10] solve_up(prob::ODEProblem{…}, sensealg::Nothing, u0::Vector{…}, p::Vector{…}, args::Rodas4{…}; kwargs::@Kwargs{})
    @ DiffEqBase C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1080
 [11] solve_up
    @ C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1066 [inlined]
 [12] solve(prob::ODEProblem{…}, args::Rodas4{…}; sensealg::Nothing, u0::Nothing, p::Nothing, wrap::Val{…}, kwargs::@Kwargs{})
    @ DiffEqBase C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1003
 [13] _adjoint_sensitivities(sol::ODESolution{…}, sensealg::InterpolatingAdjoint{…}, alg::Rodas4{…}; t::StepRangeLen{…}, dgdu_discrete::Function, dgdp_discrete::Nothing, dgdu_continuous::Nothing, dgdp_continuous::Nothing, g::Nothing, abstol::Float64, reltol::Float64, checkpoints::Vector{…}, corfunc_analytical::Nothing, callback::Nothing, kwargs::@Kwargs{})
    @ SciMLSensitivity C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\sensitivity_interface.jl:448
 [14] _adjoint_sensitivities
    @ C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\sensitivity_interface.jl:405 [inlined]
 [15] adjoint_sensitivities(sol::ODESolution{…}, args::Rodas4{…}; sensealg::InterpolatingAdjoint{…}, verbose::Bool, kwargs::@Kwargs{})
    @ SciMLSensitivity C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\sensitivity_interface.jl:397
 [16] (::SciMLSensitivity.var"#adjoint_sensitivity_backpass#308"{})(Δ::ODESolution{…})
    @ SciMLSensitivity C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\concrete_solve.jl:625
 [17] ZBack
    @ C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\chainrules.jl:211 [inlined]
 [18] (::Zygote.var"#kw_zpullback#53"{})(dy::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\chainrules.jl:237
 [19] #291
    @ C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\lib\lib.jl:206 [inlined]
 [20] (::Zygote.var"#2169#back#293"{})(Δ::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\ZygoteRules\M4xmc\src\adjoint.jl:72
 [21] #solve#51
    @ C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1003 [inlined]
 [22] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [23] #291
    @ C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\lib\lib.jl:206 [inlined]
 [24] (::Zygote.var"#2169#back#293"{})(Δ::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\ZygoteRules\M4xmc\src\adjoint.jl:72
 [25] solve
    @ C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:993 [inlined]
 [26] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [27] loss
    @ c:\Users\Matt Bossart\OneDrive - UCB-O365\Desktop\temp_for_mwe\mwe_checkpointing\mwe.jl:18 [inlined]
 [28] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Float64)
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [29] #63
    @ c:\Users\Matt Bossart\OneDrive - UCB-O365\Desktop\temp_for_mwe\mwe_checkpointing\mwe.jl:26 [inlined]
 [30] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Float64)
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [31] (::Zygote.var"#75#76"{Zygote.Pullback{Tuple{}, Tuple{}}})(Δ::Float64)
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface.jl:91
 [32] gradient(f::Function, args::Vector{Float64})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface.jl:148
 [33] top-level scope
    @ c:\Users\Matt Bossart\OneDrive - UCB-O365\Desktop\temp_for_mwe\mwe_checkpointing\mwe.jl:26

caused by: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1})

Closest candidates are:
  (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat
   @ Base rounding.jl:207
  (::Type{T})(::T) where T<:Number
   @ Core boot.jl:792
  Float64(::IrrationalConstants.Twoπ)
   @ IrrationalConstants C:\Users\Matt Bossart\.julia\packages\IrrationalConstants\vp5v4\src\macro.jl:112
  ...

Stacktrace:
  [1] convert(::Type{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1})
    @ Base .\number.jl:7
  [2] setindex!(A::Vector{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{…}, Float64, 1}, i1::Int64)
    @ Base .\array.jl:1021
  [3] macro expansion
    @ C:\Users\Matt Bossart\.julia\packages\FastBroadcast\lSD0E\src\FastBroadcast.jl:162 [inlined]
  [4] macro expansion
    @ .\simdloop.jl:77 [inlined]
  [5] __fast_materialize!
    @ C:\Users\Matt Bossart\.julia\packages\FastBroadcast\lSD0E\src\FastBroadcast.jl:161 [inlined]
  [6] _fast_materialize!
    @ C:\Users\Matt Bossart\.julia\packages\FastBroadcast\lSD0E\src\FastBroadcast.jl:195 [inlined]
  [7] fast_materialize!
    @ C:\Users\Matt Bossart\.julia\packages\FastBroadcast\lSD0E\src\FastBroadcast.jl:276 [inlined]
  [8] _ode_interpolant!(out::Vector{…}, Θ::ForwardDiff.Dual{…}, dt::Float64, y₀::Vector{…}, y₁::Vector{…}, k::Vector{…}, cache::OrdinaryDiffEq.Rodas4ConstantCache{…}, idxs::Nothing, T::Type{…}, differential_vars::Nothing)
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\dense\rosenbrock_interpolants.jl:167
  [9] ode_interpolant!
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\dense\generic_dense.jl:961 [inlined]
 [10] ode_interpolation!(out::Vector{…}, tval::ForwardDiff.Dual{…}, id::OrdinaryDiffEq.InterpolationData{…}, idxs::Nothing, deriv::Type{…}, p::Vector{…}, continuity::Symbol)
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\dense\generic_dense.jl:897
 [11] InterpolationData
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\interp_func.jl:172 [inlined]
 [12] #_#474
    @ C:\Users\Matt Bossart\.julia\packages\SciMLBase\rR75x\src\solutions\ode_solutions.jl:181 [inlined]
 [13] AbstractODESolution (repeats 2 times)
    @ C:\Users\Matt Bossart\.julia\packages\SciMLBase\rR75x\src\solutions\ode_solutions.jl:179 [inlined]
 [14] split_states(du::Vector{…}, u::Vector{…}, t::ForwardDiff.Dual{…}, S::SciMLSensitivity.ODEInterpolatingAdjointSensitivityFunction{…}; update::Bool)
    @ SciMLSensitivity C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\interpolating_adjoint.jl:237
 [15] split_states
    @ C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\interpolating_adjoint.jl:162 [inlined]
 [16] (::SciMLSensitivity.ODEInterpolatingAdjointSensitivityFunction{…})(du::Vector{…}, u::Vector{…}, p::Vector{…}, t::ForwardDiff.Dual{…})
    @ SciMLSensitivity C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\interpolating_adjoint.jl:125
 [17] ODEFunction
    @ C:\Users\Matt Bossart\.julia\packages\SciMLBase\rR75x\src\scimlfunctions.jl:2297 [inlined]
 [18] TimeGradientWrapper
    @ C:\Users\Matt Bossart\.julia\packages\SciMLBase\rR75x\src\function_wrappers.jl:17 [inlined]
 [19] derivative!(df::Vector{…}, f::SciMLBase.TimeGradientWrapper{…}, x::Float64, fx::Vector{…}, integrator::OrdinaryDiffEq.ODEIntegrator{…}, grad_config::Vector{…})
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\derivative_wrappers.jl:95
 [20] calc_tderivative!(integrator::OrdinaryDiffEq.ODEIntegrator{…}, cache::OrdinaryDiffEq.Rodas4Cache{…}, dtd1::Float64, repeat_step::Bool)
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\derivative_utils.jl:33
 [21] calc_rosenbrock_differentiation!
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\derivative_utils.jl:818 [inlined]
 [22] perform_step!(integrator::OrdinaryDiffEq.ODEIntegrator{…}, cache::OrdinaryDiffEq.Rodas4Cache{…}, repeat_step::Bool)
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\perform_step\rosenbrock_perform_step.jl:1891
 [23] perform_step!
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\perform_step\rosenbrock_perform_step.jl:1856 [inlined]
 [24] solve!(integrator::OrdinaryDiffEq.ODEIntegrator{…})
    @ OrdinaryDiffEq C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\solve.jl:557
 [25] #__solve#560
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\solve.jl:7 [inlined]
 [26] __solve
    @ C:\Users\Matt Bossart\.julia\packages\OrdinaryDiffEq\HQ92J\src\solve.jl:1 [inlined]
 [27] solve_call(_prob::ODEProblem{…}, args::Rodas4{…}; merge_callbacks::Bool, kwargshandle::Nothing, kwargs::@Kwargs{})
    @ DiffEqBase C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:612
 [28] solve_up(prob::ODEProblem{…}, sensealg::Nothing, u0::Vector{…}, p::Vector{…}, args::Rodas4{…}; kwargs::@Kwargs{})
    @ DiffEqBase C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1080
 [29] solve_up
    @ C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1066 [inlined]
 [30] solve(prob::ODEProblem{…}, args::Rodas4{…}; sensealg::Nothing, u0::Nothing, p::Nothing, wrap::Val{…}, kwargs::@Kwargs{})
    @ DiffEqBase C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1003
 [31] _adjoint_sensitivities(sol::ODESolution{…}, sensealg::InterpolatingAdjoint{…}, alg::Rodas4{…}; t::StepRangeLen{…}, dgdu_discrete::Function, dgdp_discrete::Nothing, dgdu_continuous::Nothing, dgdp_continuous::Nothing, g::Nothing, abstol::Float64, reltol::Float64, checkpoints::Vector{…}, corfunc_analytical::Nothing, callback::Nothing, kwargs::@Kwargs{})
    @ SciMLSensitivity C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\sensitivity_interface.jl:448
 [32] _adjoint_sensitivities
    @ C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\sensitivity_interface.jl:405 [inlined]
 [33] adjoint_sensitivities(sol::ODESolution{…}, args::Rodas4{…}; sensealg::InterpolatingAdjoint{…}, verbose::Bool, kwargs::@Kwargs{})
    @ SciMLSensitivity C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\sensitivity_interface.jl:397
 [34] (::SciMLSensitivity.var"#adjoint_sensitivity_backpass#308"{})(Δ::ODESolution{…})
    @ SciMLSensitivity C:\Users\Matt Bossart\.julia\packages\SciMLSensitivity\4YtYh\src\concrete_solve.jl:625
 [35] ZBack
    @ C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\chainrules.jl:211 [inlined]
 [36] (::Zygote.var"#kw_zpullback#53"{})(dy::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\chainrules.jl:237
 [37] #291
    @ C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\lib\lib.jl:206 [inlined]
 [38] (::Zygote.var"#2169#back#293"{})(Δ::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\ZygoteRules\M4xmc\src\adjoint.jl:72
 [39] #solve#51
    @ C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:1003 [inlined]
 [40] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [41] #291
    @ C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\lib\lib.jl:206 [inlined]
 [42] (::Zygote.var"#2169#back#293"{})(Δ::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\ZygoteRules\M4xmc\src\adjoint.jl:72
 [43] solve
    @ C:\Users\Matt Bossart\.julia\packages\DiffEqBase\c8MAQ\src\solve.jl:993 [inlined]
 [44] (::Zygote.Pullback{…})(Δ::ODESolution{…})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [45] loss
    @ c:\Users\Matt Bossart\OneDrive - UCB-O365\Desktop\temp_for_mwe\mwe_checkpointing\mwe.jl:18 [inlined]
 [46] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Float64)
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [47] #63
    @ c:\Users\Matt Bossart\OneDrive - UCB-O365\Desktop\temp_for_mwe\mwe_checkpointing\mwe.jl:26 [inlined]
 [48] (::Zygote.Pullback{Tuple{…}, Tuple{…}})(Δ::Float64)
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface2.jl:0
 [49] (::Zygote.var"#75#76"{Zygote.Pullback{Tuple{}, Tuple{}}})(Δ::Float64)
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface.jl:91
 [50] gradient(f::Function, args::Vector{Float64})
    @ Zygote C:\Users\Matt Bossart\.julia\packages\Zygote\nsBv0\src\compiler\interface.jl:148

Environment (please complete the following information):

  • Output of using Pkg; Pkg.status()
  [7da242da] Enzyme v0.12.21
  [1dea7af3] OrdinaryDiffEq v6.85.0
  [1ed8b502] SciMLSensitivity v7.62.0
  [e88e6eb3] Zygote v0.6.70
  • Output of using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
  [47edcb42] ADTypes v1.5.3
  [621f4979] AbstractFFTs v1.5.0
  [7d9f7c33] Accessors v0.1.36
  [79e6a3ab] Adapt v4.0.4
  [66dad0bd] AliasTables v1.1.3
  [ec485272] ArnoldiMethod v0.4.0
  [4fba245c] ArrayInterface v7.11.0
  [4c555306] ArrayLayouts v1.10.0
  [a9b6321e] Atomix v0.1.0
  [62783981] BitTwiddlingConvenienceFunctions v0.1.6
  [fa961155] CEnum v0.5.0
  [2a0fbf3d] CPUSummary v0.2.6
  [49dc2e85] Calculus v0.5.1
  [7057c7e9] Cassette v0.3.13
  [082447d4] ChainRules v1.69.0
  [d360d2e6] ChainRulesCore v1.24.0
  [fb6a15b2] CloseOpenIntervals v0.1.13
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.0
  [f70d9fcc] CommonWorldInvalidations v1.0.0
  [34da2185] Compat v4.15.0
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
  [187b0558] ConstructionBase v1.5.5
  [adafc99b] CpuId v0.3.1
  [9a962f9c] DataAPI v1.16.0
  [864edb3b] DataStructures v0.18.20
  [e2d170a0] DataValueInterfaces v1.0.0
  [2b5f629d] DiffEqBase v6.151.5
  [459566f4] DiffEqCallbacks v3.6.2
  [77a26b50] DiffEqNoiseProcess v5.21.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
  [a0c0ee7d] DifferentiationInterface v0.5.7
  [b4f34e82] Distances v0.10.11
  [31c24e10] Distributions v0.25.109
  [ffbed154] DocStringExtensions v0.9.3
  [fa6b7ba4] DualNumbers v0.6.8
  [da5c29d0] EllipsisNotation v1.8.0
  [4e289a0a] EnumX v1.0.4
  [7da242da] Enzyme v0.12.21
  [f151be2c] EnzymeCore v0.7.6
  [d4d017d3] ExponentialUtilities v1.26.1
  [e2ba6199] ExprTools v0.1.10
  [7034ab61] FastBroadcast v0.3.4
  [9aa1b823] FastClosures v0.3.2
  [29a986be] FastLapackInterface v2.0.4
  [1a297f60] FillArrays v1.11.0
  [6a86dc24] FiniteDiff v2.23.1
  [f6369f11] ForwardDiff v0.10.36
  [f62d2435] FunctionProperties v0.1.2
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [d9f16b24] Functors v0.4.11
  [0c68f7d7] GPUArrays v10.2.3
  [46192b85] GPUArraysCore v0.1.6
  [61eb1bfa] GPUCompiler v0.26.6
  [c145ed77] GenericSchur v0.5.4
  [86223c79] Graphs v1.11.2
  [3e5b6fbb] HostCPUFeatures v0.1.17
  [34004b35] HypergeometricFunctions v0.3.23
  [7869d1d1] IRTools v0.4.14
  [615f187c] IfElse v0.1.1
  [d25df0c9] Inflate v0.1.5
  [3587e190] InverseFunctions v0.1.14
  [92d709cd] IrrationalConstants v0.2.2
  [82899510] IteratorInterfaceExtensions v1.0.0
  [692b3bcd] JLLWrappers v1.5.0
  [ccbc3e58] JumpProcesses v9.11.1
  [ef3ab10e] KLU v0.6.0
  [63c18a36] KernelAbstractions v0.9.22
  [ba0b0d4f] Krylov v0.9.6
  [929cbde3] LLVM v8.0.0
  [10f19ff3] LayoutPointers v0.1.17
  [5078a376] LazyArrays v2.1.2
  [2d8b4e74] LevyArea v1.0.0
  [d3d80556] LineSearches v7.2.0
  [7ed4a6bd] LinearSolve v2.30.2
  [2ab3a3ac] LogExpFunctions v0.3.28
  [bdcacae8] LoopVectorization v0.12.171
  [1914dd2f] MacroTools v0.5.13
  [d125e4d3] ManualMemory v0.1.8
  [bb5d69b7] MaybeInplace v0.1.3
  [e1d29d7a] Missings v1.2.0
  [46d2c3a1] MuladdMacro v0.2.4
  [d41bc354] NLSolversBase v7.8.3
  [2774e3e8] NLsolve v4.5.1
  [872c559c] NNlib v0.9.18
  [77ba4419] NaNMath v1.0.2
  [8913a72c] NonlinearSolve v3.13.1
  [d8793406] ObjectFile v0.4.1
  [6fe1bfb0] OffsetArrays v1.14.0
  [429524aa] Optim v1.9.4
  [3bd65402] Optimisers v0.3.3
  [bac558e1] OrderedCollections v1.6.3
  [1dea7af3] OrdinaryDiffEq v6.85.0
  [90014a1f] PDMats v0.11.31
  [65ce6f38] PackageExtensionCompat v1.0.2
  [d96e819e] Parameters v0.12.3
  [e409e4f3] PoissonRandom v0.4.4
  [f517fe37] Polyester v0.7.15
  [1d0040c9] PolyesterWeave v0.2.2
  [85a6dd25] PositiveFactorizations v0.2.4
  [d236fae5] PreallocationTools v0.4.22
  [aea7be01] PrecompileTools v1.2.1
  [21216c6a] Preferences v1.4.3
  [43287f4e] PtrArrays v1.2.0
  [1fd47b50] QuadGK v2.9.4
  [74087812] Random123 v1.7.0
  [e6cf234a] RandomNumbers v1.5.3
  [c1ae055f] RealDot v0.1.0
  [3cdcf5f2] RecipesBase v1.3.4
  [731186ca] RecursiveArrayTools v3.23.1
  [f2c3362d] RecursiveFactorization v0.2.23
  [189a3867] Reexport v1.2.2
  [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
  [37e2e3b7] ReverseDiff v1.15.3
  [79098fc4] Rmath v0.7.1
  [7e49a35a] RuntimeGeneratedFunctions v0.5.13
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.43
  [0bca4576] SciMLBase v2.42.0
  [c0aeaf25] SciMLOperators v0.3.8
  [1ed8b502] SciMLSensitivity v7.62.0
  [53ae85a6] SciMLStructures v1.4.1
  [6c6a2e73] Scratch v1.2.1
  [efcf1570] Setfield v1.1.1
  [727e6d20] SimpleNonlinearSolve v1.10.1
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [a2af1166] SortingAlgorithms v1.2.1
  [47a9eef4] SparseDiffTools v2.19.0
  [dc90abb0] SparseInverseSubset v0.1.2
  [0a514795] SparseMatrixColorings v0.3.3
  [e56a9233] Sparspak v0.3.9
  [276daf66] SpecialFunctions v2.4.0
  [aedffcd0] Static v1.1.0
  [0d7ed370] StaticArrayInterface v1.5.1
  [90137ffa] StaticArrays v1.9.7
  [1e83bf80] StaticArraysCore v1.4.3
  [82ae8749] StatsAPI v1.7.0
  [2913bbd2] StatsBase v0.34.3
  [4c63d2b9] StatsFuns v1.3.1
  [789caeaf] StochasticDiffEq v6.66.0
  [7792a7ef] StrideArraysCore v0.5.7
  [09ab397b] StructArrays v0.6.18
  [53d494c1] StructIO v0.3.0
  [2efcf032] SymbolicIndexingInterface v0.3.22
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.11.1
  [8290d209] ThreadingUtilities v0.5.2
  [a759f4b9] TimerOutputs v0.5.24
  [9f7883ad] Tracker v0.2.34
  [d5829a12] TriangularSolve v0.2.1
  [410a4b4d] Tricks v0.1.8
  [781d530d] TruncatedStacktraces v1.4.0
  [3a884ed6] UnPack v1.0.2
  [013be700] UnsafeAtomics v0.2.1
  [d80eeb9a] UnsafeAtomicsLLVM v0.1.5
  [3d5dd08c] VectorizationBase v0.21.70
  [19fa3120] VertexSafeGraphs v0.2.0
  [e88e6eb3] Zygote v0.6.70
  [700de1a5] ZygoteRules v0.2.5
⌅ [7cc45869] Enzyme_jll v0.0.128+0
  [1d5cc7b8] IntelOpenMP_jll v2024.1.0+0
  [dad2f222] LLVMExtra_jll v0.0.30+0
  [856f044c] MKL_jll v2024.1.0+0
  [efe28fd5] OpenSpecFun_jll v0.5.5+0
  [f50d1b31] Rmath_jll v0.4.2+0
  [1317d2d5] oneTBB_jll v2021.12.0+0
  [0dad84c5] ArgTools v1.1.1
  [56f22d72] Artifacts
  [2a0f44e3] Base64
  [ade2ca70] Dates
  [8ba89e20] Distributed
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching
  [9fa8497b] Future
  [b77e0a4c] InteractiveUtils
  [4af54fe1] LazyArtifacts
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2
  [8f399da3] Libdl
  [37e2e46d] LinearAlgebra
  [56ddb016] Logging
  [d6f4376e] Markdown
  [a63ad114] Mmap
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.10.0
  [de0858da] Printf
  [3fa0cd96] REPL
  [9a3f8284] Random
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization
  [1a1011a3] SharedArrays
  [6462fe0b] Sockets
  [2f01184e] SparseArrays v1.10.0
  [10745b16] Statistics v1.10.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test
  [cf7118a7] UUIDs
  [4ec0a83e] Unicode
  [e66e0078] CompilerSupportLibraries_jll v1.1.1+0
  [deac9b47] LibCURL_jll v8.4.0+0
  [e37daf67] LibGit2_jll v1.6.4+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.2+1
  [14a3606d] MozillaCACerts_jll v2023.1.10
  [4536629a] OpenBLAS_jll v0.3.23+4
  [05823500] OpenLibm_jll v0.8.1+2
  [bea87d4a] SuiteSparse_jll v7.2.1+1
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.8.0+1
  [8e850ede] nghttp2_jll v1.52.0+1
  [3f19e933] p7zip_jll v17.4.0+2
  • Output of versioninfo()
Julia Version 1.10.4
Commit 48d4fd4843 (2024-06-04 10:41 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
  CPU: 16 × 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, tigerlake)
Threads: 1 default, 0 interactive, 1 GC (on 16 virtual cores)
Environment:
  JULIA_EDITOR = code
  JULIA_NUM_THREADS =
@m-bossart m-bossart added the bug label Jul 3, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant