|
| 1 | +!pip install ultralytics |
| 2 | +!pip install supervision |
| 3 | +!pip install roboflow |
| 4 | +!{sys.executable} -m pip install 'git+https://github.com/facebookresearch/segment-anything.git' |
| 5 | +!wget -q https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import cv2 |
| 9 | +import os |
| 10 | +import sys |
| 11 | +import torch |
| 12 | + |
| 13 | +#ROBOFLOW |
| 14 | +from roboflow import Roboflow |
| 15 | +rf = Roboflow(api_key="Pho4XVVaJnNcR3y3HNrK") |
| 16 | +project = rf.workspace("team12").project("airplane-bp8fl") |
| 17 | +dataset = project.version(2).download("yolov8") |
| 18 | + |
| 19 | +# YOLO |
| 20 | +from ultralytics import YOLO |
| 21 | +yolo_model = YOLO('yolov8x.pt') |
| 22 | + |
| 23 | +# SEGMENT-Anything |
| 24 | +from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor |
| 25 | +import supervision as sv |
| 26 | + |
| 27 | +DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
| 28 | +MODEL_TYPE = "vit_l" |
| 29 | + |
| 30 | +CHECKPOINT_PATH = os.path.join("sam_vit_l_0b3195.pth") |
| 31 | +sam = sam_model_registry[MODEL_TYPE](checkpoint=CHECKPOINT_PATH).to(device=DEVICE) |
| 32 | + |
| 33 | +mask_predictor = SamPredictor(sam) |
| 34 | + |
| 35 | +# Run Code |
| 36 | + |
| 37 | +VIDEO_SOURCE = '/content/airplane2.mp4' |
| 38 | +VIDEO_DESTINATION = '/content/result2.avi' |
| 39 | + |
| 40 | +# Video kaynağını aç |
| 41 | +cap = cv2.VideoCapture(VIDEO_SOURCE) |
| 42 | + |
| 43 | +# Video kaydedicisini ayarla |
| 44 | +width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
| 45 | +height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
| 46 | +fourcc = cv2.VideoWriter_fourcc(*'XVID') |
| 47 | +FPS = 30.0 |
| 48 | +out = cv2.VideoWriter(VIDEO_DESTINATION, fourcc, FPS, (width, height)) |
| 49 | + |
| 50 | +while True: |
| 51 | + # Frame oku |
| 52 | + ret, frame = cap.read() |
| 53 | + |
| 54 | + # Okuma başarısızsa video bitti |
| 55 | + if not ret: |
| 56 | + break |
| 57 | + |
| 58 | + # Girdi frame'ini SuperAnnotate'e uygun formata getir |
| 59 | + frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
| 60 | + results = yolo_model.predict(source=frame) |
| 61 | + |
| 62 | + boxes_class_name = np.array([]) |
| 63 | + for r in results: |
| 64 | + for c in r.boxes.cls: |
| 65 | + boxes_class_name = np.append(boxes_class_name,yolo_model.names[int(c)]) |
| 66 | + boxes_class_name |
| 67 | + |
| 68 | + k = 0 |
| 69 | + result_np_son = np.array([]) |
| 70 | + result_class = np.array([]) |
| 71 | + result_score = np.array([]) |
| 72 | + for result in results: |
| 73 | + result_np = np.array(result.boxes.data.cpu()) |
| 74 | + |
| 75 | + for i in result_np: |
| 76 | + result_np_son = np.append(result_np_son,i[:][:-2]) |
| 77 | + result_class = np.append(result_class,i[:][-1:]) |
| 78 | + result_score = np.append(result_score,i[:][-2:-1]) |
| 79 | + k += 1 |
| 80 | + |
| 81 | + |
| 82 | + boxes = result_np_son.reshape((k,4)) |
| 83 | + boxes_class = result_class.reshape((k,)) |
| 84 | + boxes_score = result_score.reshape((k,)) |
| 85 | + |
| 86 | + |
| 87 | + segmented_image = frame.copy() |
| 88 | + box_image = frame.copy() |
| 89 | + boxes_class_value = {'0':sv.Color.white(), |
| 90 | + '1':sv.Color.blue(), |
| 91 | + '2':sv.Color.blue(), |
| 92 | + '3':sv.Color.blue(), |
| 93 | + '4':sv.Color.red(), |
| 94 | + '5':sv.Color.blue(), |
| 95 | + '7':sv.Color.black(), |
| 96 | + '8':sv.Color.green(), |
| 97 | + '9':sv.Color.blue(), |
| 98 | + '37':sv.Color.blue()} |
| 99 | + mask_predictor.set_image(frame) |
| 100 | + |
| 101 | + boxes = result.boxes.xyxy |
| 102 | + if len(boxes) != 0: |
| 103 | + masks, scores, logits = mask_predictor.predict_torch( |
| 104 | + point_coords = None, |
| 105 | + point_labels = None, |
| 106 | + boxes = boxes * 1040/max(frame.shape), |
| 107 | + multimask_output=True |
| 108 | + ) |
| 109 | + |
| 110 | + masks = masks.cpu().numpy() |
| 111 | + |
| 112 | + i = 0 |
| 113 | + for box in boxes.cpu().numpy(): |
| 114 | + |
| 115 | + box_annotator = sv.BoxAnnotator(color= boxes_class_value[str(int(boxes_class[i]))], text_padding=10) |
| 116 | + mask_annotator = sv.MaskAnnotator(color= boxes_class_value[str(int(boxes_class[i]))]) |
| 117 | + |
| 118 | + detections = sv.Detections( |
| 119 | + xyxy=sv.mask_to_xyxy(masks=masks[i]), |
| 120 | + mask=masks[i] |
| 121 | + ) |
| 122 | + |
| 123 | + detections = detections[detections.area == np.max(detections.area)] |
| 124 | + box_image = box_annotator.annotate(scene=box_image, detections=detections, skip_label=True) |
| 125 | + segmented_image = mask_annotator.annotate(scene=segmented_image, detections=detections) |
| 126 | + i += 1 |
| 127 | + |
| 128 | + # Video kaydediciye yaz |
| 129 | + out.write(cv2.cvtColor(segmented_image, cv2.COLOR_RGB2BGR)) |
| 130 | + |
| 131 | +# Video kaynak ve kaydediciyi serbest bırak |
| 132 | +cap.release() |
| 133 | + |
0 commit comments