forked from michaelrsweet/pdfio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pdfio-crypto.c
1118 lines (934 loc) · 33.7 KB
/
pdfio-crypto.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// Cryptographic support functions for PDFio.
//
// Copyright © 2021-2023 by Michael R Sweet.
//
// Licensed under Apache License v2.0. See the file "LICENSE" for more
// information.
//
#include "pdfio-private.h"
#if _WIN32
# include <windows.h>
# include <bcrypt.h>
# include <sys/types.h>
# include <sys/timeb.h>
#else
# include <sys/time.h>
#endif // _WIN32
#ifdef __has_include
# if __has_include(<sys/random.h>)
# define HAVE_GETRANDOM 1
# include <sys/random.h>
# endif // __has_include(<sys/random.h>)
#endif // __has_include
//
// PDF files can use one of several methods to encrypt a PDF file. There is
// an owner password that controls/unlocks full editing/usage permissions and a
// user password that unlocks limited usage of the PDF. Permissions are set
// using bits for copy, print, etc. (see the `pdfio_permission_t` enumeration).
// Passwords can be up to 32 bytes in length, with a well-known padding string
// that is applied if the string is less than 32 bytes or there is no password.
//
// > Note: PDF encryption has several design weaknesses which limit the
// > protection offered. The V2 and V4 security handlers depend on the obsolete
// > MD5 and RC4 algorithms for key generation, and Cipher Block Chaining (CBC)
// > further weakens AES support. Enforcement of usage permissions depends on
// > the consuming software honoring them, so if the password is known or (more
// > commonly) the user password is blank, it is possible to bypass usage
// > permissions completely.
//
// PDFio supports the following:
//
// - The original 40-bit RC4 (V2+R2) encryption for reading only
// - 128-bit RC4 (V2+R3) encryption for reading and writing
// - 128-bit AES (V4+R4) encryption for reading and writing
// - TODO: 256-bit AES (V6+R6) encryption for reading and writing
//
// Common values:
//
// - "F" is the file encryption key (40 to 256 bits/5 to 32 bytes)
// - "Fid" is the file ID string (stored in PDF file, 32 bytes)
// - "O" is the owner key (stored in PDF file, 32 bytes)
// - "Opad" is the padded owner password (32 bytes)
// - "P" is the permissions integer (stored in PDF file)
// - "P4" is the permissions integer as a 32-bit little-endian value
// - "U" is the user key (stored in PDF file, 32 bytes)
// - "Upad" is the padded user password (32 bytes)
//
// V2+R2 handler:
//
// F = md5(Upad+O+P4+Fid)
// O = rc4(Upad, md5(Opad))
// (unlock with owner password)
// Upad = rc4(O, md5(Opad))
// U = rc4(md5(Upad+Fid)+0[16], F)
//
// V2+R3/V4+R4 handler:
//
// F = md5(md5(Upad+O+P4+Fid))^50
// O = rc4(Upad, md5(md5(Opad))^50)^20
// (unlock with owner password)
// Upad = rc4(O, md5(md5(Opad))^50)^20
// U = rc4(md5(Upad+Fid)+0[16], F)^20
//
// V6+R6 handler:
//
// TODO: document V6+R6 handler
//
//
// Local globals...
//
static uint8_t pdf_passpad[32] = // Padding for passwords
{
0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41,
0x64, 0x00, 0x4e, 0x56, 0xff, 0xfa, 0x01, 0x08,
0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80,
0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a
};
//
// Local functions...
//
static void decrypt_user_key(pdfio_encryption_t encryption, const uint8_t *file_key, uint8_t user_key[32]);
static void encrypt_user_key(pdfio_encryption_t encryption, const uint8_t *file_key, uint8_t user_key[32]);
static void make_file_key(pdfio_encryption_t encryption, pdfio_permission_t permissions, const unsigned char *file_id, size_t file_idlen, const uint8_t *user_pad, const uint8_t *owner_key, uint8_t file_key[16]);
static void make_owner_key(pdfio_encryption_t encryption, const uint8_t *owner_pad, const uint8_t *user_pad, uint8_t owner_key[32]);
static void make_user_key(const unsigned char *file_id, size_t file_idlen, uint8_t user_key[32]);
static void pad_password(const char *password, uint8_t pad[32]);
//
// '_pdfioCryptoLock()' - Lock a PDF file by generating the encryption object and keys.
//
bool // O - `true` on success, `false` otherwise
_pdfioCryptoLock(
pdfio_file_t *pdf, // I - PDF file
pdfio_permission_t permissions, // I - Use permissions
pdfio_encryption_t encryption, // I - Type of encryption to use
const char *owner_password, // I - Owner password, if any
const char *user_password) // I - User password, if any
{
pdfio_dict_t *dict; // Encryption dictionary
uint8_t owner_pad[32], // Padded owner password
user_pad[32], // Padded user password
*file_id; // File ID bytes
size_t file_idlen; // Length of file ID
pdfio_dict_t *cf_dict, // CF dictionary
*filter_dict; // CryptFilter dictionary
if ((dict = pdfioDictCreate(pdf)) == NULL)
{
_pdfioFileError(pdf, "Unable to create encryption dictionary.");
return (false);
}
pdfioDictSetName(dict, "Filter", "Standard");
switch (encryption)
{
case PDFIO_ENCRYPTION_RC4_128 :
case PDFIO_ENCRYPTION_AES_128 :
// Create the 128-bit encryption keys...
pad_password(user_password, user_pad);
if (!owner_password && user_password && *user_password)
{
// Generate a random owner password...
_pdfioCryptoMakeRandom(owner_pad, sizeof(owner_pad));
}
else
{
// Use supplied owner password
pad_password(owner_password, owner_pad);
}
// Compute the owner key...
make_owner_key(encryption, owner_pad, user_pad, pdf->owner_key);
pdf->owner_keylen = 32;
// Generate the encryption key
file_id = pdfioArrayGetBinary(pdf->id_array, 0, &file_idlen);
make_file_key(encryption, permissions, file_id, file_idlen, user_pad, pdf->owner_key, pdf->file_key);
pdf->file_keylen = 16;
// Generate the user key...
make_user_key(file_id, file_idlen, pdf->user_key);
encrypt_user_key(encryption, pdf->file_key, pdf->user_key);
pdf->user_keylen = 32;
// Save everything in the dictionary...
pdfioDictSetNumber(dict, "Length", 128);
pdfioDictSetBinary(dict, "O", pdf->owner_key, sizeof(pdf->owner_key));
pdfioDictSetNumber(dict, "P", (int)permissions);
pdfioDictSetNumber(dict, "R", encryption == PDFIO_ENCRYPTION_RC4_128 ? 3 : 4);
pdfioDictSetNumber(dict, "V", encryption == PDFIO_ENCRYPTION_RC4_128 ? 2 : 4);
pdfioDictSetBinary(dict, "U", pdf->user_key, sizeof(pdf->user_key));
if (encryption == PDFIO_ENCRYPTION_AES_128)
{
if ((cf_dict = pdfioDictCreate(pdf)) == NULL)
{
_pdfioFileError(pdf, "Unable to create Encryption CF dictionary.");
return (false);
}
if ((filter_dict = pdfioDictCreate(pdf)) == NULL)
{
_pdfioFileError(pdf, "Unable to create Encryption CryptFilter dictionary.");
return (false);
}
pdfioDictSetName(filter_dict, "Type", "CryptFilter");
pdfioDictSetName(filter_dict, "CFM", "AESV2");
pdfioDictSetDict(cf_dict, "PDFio", filter_dict);
pdfioDictSetDict(dict, "CF", cf_dict);
pdfioDictSetName(dict, "StmF", "PDFio");
pdfioDictSetName(dict, "StrF", "PDFio");
pdfioDictSetBoolean(dict, "EncryptMetadata", true);
}
break;
case PDFIO_ENCRYPTION_AES_256 :
// TODO: Implement AES-256 (/V 6 /R 6)
default :
_pdfioFileError(pdf, "Encryption mode %d not supported for writing.", (int)encryption);
return (false);
}
if ((pdf->encrypt_obj = pdfioFileCreateObj(pdf, dict)) == NULL)
{
_pdfioFileError(pdf, "Unable to create encryption object.");
return (false);
}
pdfioObjClose(pdf->encrypt_obj);
pdf->encryption = encryption;
pdf->permissions = permissions;
return (true);
}
//
// '_pdfioCryptoMakeRandom()' - Fill a buffer with good random numbers.
//
void
_pdfioCryptoMakeRandom(uint8_t *buffer, // I - Buffer
size_t bytes) // I - Number of bytes
{
#ifdef __APPLE__
// macOS/iOS provide the arc4random function which is seeded with entropy
// from the system...
while (bytes > 0)
{
// Just collect 8 bits from each call to fill the buffer...
*buffer++ = (uint8_t)arc4random();
bytes --;
}
#else
# if _WIN32
// Windows provides the CryptGenRandom function...
HCRYPTPROV prov; // Cryptographic provider
if (CryptAcquireContextA(&prov, NULL, NULL, PROV_RSA_FULL, 0))
{
// Got the default crypto provider, try to get random data...
BOOL success = CryptGenRandom(prov, (DWORD)bytes, buffer);
// Release the crypto provider and return on success...
CryptReleaseContext(prov, 0);
if (success)
return;
}
# elif HAVE_GETRANDOM
// Linux provides a system call called getrandom that uses system entropy ...
ssize_t rbytes; // Bytes read
while (bytes > 0)
{
if ((rbytes = getrandom(buffer, bytes, 0)) < 0)
{
if (errno != EINTR && errno != EAGAIN)
break;
}
bytes -= (size_t)rbytes;
buffer += rbytes;
}
if (bytes == 0)
return;
# else
// Other UNIX-y systems have /dev/urandom...
int fd; // Random number file
ssize_t rbytes; // Bytes read
// Fall back on /dev/urandom...
if ((fd = open("/dev/urandom", O_RDONLY)) >= 0)
{
while (bytes > 0)
{
if ((rbytes = read(fd, buffer, bytes)) < 0)
{
if (errno != EINTR && errno != EAGAIN)
break;
}
bytes -= (size_t)rbytes;
buffer += rbytes;
}
close(fd);
if (bytes == 0)
return;
}
# endif // _WIN32
// If we get here then we were unable to get enough random data or the local
// system doesn't have enough entropy. Make some up...
uint32_t i, // Looping var
mt_state[624], // Mersenne twister state
mt_index, // Mersenne twister index
temp; // Temporary value
# if _WIN32
struct _timeb curtime; // Current time
_ftime(&curtime);
mt_state[0] = (uint32_t)(curtime.time + curtime.millitm);
# else
struct timeval curtime; // Current time
gettimeofday(&curtime, NULL);
mt_state[0] = (uint32_t)(curtime.tv_sec + curtime.tv_usec);
# endif // _WIN32
// Seed the random number state...
mt_index = 0;
for (i = 1; i < 624; i ++)
mt_state[i] = (uint32_t)((1812433253 * (mt_state[i - 1] ^ (mt_state[i - 1] >> 30))) + i);
// Fill the buffer with random numbers...
while (bytes > 0)
{
if (mt_index == 0)
{
// Generate a sequence of random numbers...
uint32_t i1 = 1, i397 = 397; // Looping vars
for (i = 0; i < 624; i ++)
{
temp = (mt_state[i] & 0x80000000) + (mt_state[i1] & 0x7fffffff);
mt_state[i] = mt_state[i397] ^ (temp >> 1);
if (temp & 1)
mt_state[i] ^= 2567483615u;
i1 ++;
i397 ++;
if (i1 == 624)
i1 = 0;
if (i397 == 624)
i397 = 0;
}
}
// Pull 32-bits of random data...
temp = mt_state[mt_index ++];
temp ^= temp >> 11;
temp ^= (temp << 7) & 2636928640u;
temp ^= (temp << 15) & 4022730752u;
temp ^= temp >> 18;
if (mt_index == 624)
mt_index = 0;
// Copy to the buffer...
switch (bytes)
{
case 1 :
*buffer++ = (uint8_t)(temp >> 24);
bytes --;
break;
case 2 :
*buffer++ = (uint8_t)(temp >> 24);
*buffer++ = (uint8_t)(temp >> 16);
bytes -= 2;
break;
case 3 :
*buffer++ = (uint8_t)(temp >> 24);
*buffer++ = (uint8_t)(temp >> 16);
*buffer++ = (uint8_t)(temp >> 8);
bytes -= 3;
break;
default :
*buffer++ = (uint8_t)(temp >> 24);
*buffer++ = (uint8_t)(temp >> 16);
*buffer++ = (uint8_t)(temp >> 8);
*buffer++ = (uint8_t)temp;
bytes -= 4;
break;
}
}
#endif // __APPLE__
}
//
// '_pdfioCryptoMakeReader()' - Setup a cryptographic context and callback for reading.
//
_pdfio_crypto_cb_t // O - Decryption callback or `NULL` for none
_pdfioCryptoMakeReader(
pdfio_file_t *pdf, // I - PDF file
pdfio_obj_t *obj, // I - PDF object
_pdfio_crypto_ctx_t *ctx, // I - Pointer to crypto context
uint8_t *iv, // I - Buffer for initialization vector
size_t *ivlen) // IO - Size of initialization vector
{
uint8_t data[21]; // Key data
_pdfio_md5_t md5; // MD5 state
uint8_t digest[16]; // MD5 digest value
#if PDFIO_OBJ_CRYPT
pdfio_array_t *id_array; // Object ID array
unsigned char *id_value; // Object ID value
size_t id_len; // Length of object ID
uint8_t temp_key[16]; // File key for object
#endif // PDFIO_OBJ_CRYPT
uint8_t *file_key; // Computed file key to use
PDFIO_DEBUG("_pdfioCryptoMakeReader(pdf=%p, obj=%p(%d), ctx=%p, iv=%p, ivlen=%p(%d))\n", pdf, obj, (int)obj->number, ctx, iv, ivlen, (int)*ivlen);
// Range check input...
if (!pdf)
{
*ivlen = 0;
return (NULL);
}
#if PDFIO_OBJ_CRYPT
if ((id_array = pdfioDictGetArray(pdfioObjGetDict(obj), "ID")) != NULL)
{
// Object has its own ID that will get used for encryption...
_pdfio_md5_t md5; // MD5 context
uint8_t file_digest[16]; // MD5 digest of file ID and pad
uint8_t user_pad[32], // Padded user password
own_user_key[32], // Calculated user key
pdf_user_key[32]; // Decrypted user key
PDFIO_DEBUG("_pdfioCryptoMakeReader: Per-object file ID.\n");
if ((id_value = pdfioArrayGetBinary(id_array, 0, &id_len)) == NULL)
{
*ivlen = 0;
return (NULL);
}
_pdfioCryptoMD5Init(&md5);
_pdfioCryptoMD5Append(&md5, pdf_passpad, 32);
_pdfioCryptoMD5Append(&md5, id_value, id_len);
_pdfioCryptoMD5Finish(&md5, file_digest);
make_owner_key(pdf->encryption, pdf->password, pdf->owner_key, user_pad);
make_file_key(pdf->encryption, pdf->permissions, id_value, id_len, user_pad, pdf->owner_key, temp_key);
make_user_key(id_value, id_len, own_user_key);
if (memcmp(own_user_key, pdf->user_key, sizeof(own_user_key)))
{
PDFIO_DEBUG("_pdfioCryptoMakeReader: Not user password, trying owner password.\n");
make_file_key(pdf->encryption, pdf->permissions, id_value, id_len, pdf->password, pdf->owner_key, temp_key);
make_user_key(id_value, id_len, own_user_key);
memcpy(pdf_user_key, pdf->user_key, sizeof(pdf_user_key));
decrypt_user_key(pdf->encryption, temp_key, pdf_user_key);
if (memcmp(pdf->password, pdf_user_key, 32) && memcmp(own_user_key, pdf_user_key, 16))
{
*ivlen = 0;
return (NULL);
}
}
file_key = temp_key;
}
else
#endif // PDFIO_OBJ_CRYPT
{
// Use the default file key...
file_key = pdf->file_key;
}
switch (pdf->encryption)
{
default :
*ivlen = 0;
return (NULL);
case PDFIO_ENCRYPTION_RC4_40 :
// Copy the key data for the MD5 hash.
memcpy(data, file_key, 16);
data[16] = (uint8_t)obj->number;
data[17] = (uint8_t)(obj->number >> 8);
data[18] = (uint8_t)(obj->number >> 16);
data[19] = (uint8_t)obj->generation;
data[20] = (uint8_t)(obj->generation >> 8);
// Hash it...
_pdfioCryptoMD5Init(&md5);
_pdfioCryptoMD5Append(&md5, data, sizeof(data));
_pdfioCryptoMD5Finish(&md5, digest);
// Initialize the RC4 context using 40 bits of the digest...
_pdfioCryptoRC4Init(&ctx->rc4, digest, 5);
*ivlen = 0;
return ((_pdfio_crypto_cb_t)_pdfioCryptoRC4Crypt);
case PDFIO_ENCRYPTION_AES_128 :
if (*ivlen < 16)
{
*ivlen = 0;
_pdfioFileError(pdf, "Value too short for AES encryption.");
return (NULL);
}
case PDFIO_ENCRYPTION_RC4_128 :
// Copy the key data for the MD5 hash.
memcpy(data, file_key, 16);
data[16] = (uint8_t)obj->number;
data[17] = (uint8_t)(obj->number >> 8);
data[18] = (uint8_t)(obj->number >> 16);
data[19] = (uint8_t)obj->generation;
data[20] = (uint8_t)(obj->generation >> 8);
// Hash it...
_pdfioCryptoMD5Init(&md5);
_pdfioCryptoMD5Append(&md5, data, sizeof(data));
if (pdf->encryption == PDFIO_ENCRYPTION_AES_128)
_pdfioCryptoMD5Append(&md5, (const uint8_t *)"sAlT", 4);
_pdfioCryptoMD5Finish(&md5, digest);
// Initialize the RC4/AES context using the digest...
if (pdf->encryption == PDFIO_ENCRYPTION_RC4_128)
{
*ivlen = 0;
_pdfioCryptoRC4Init(&ctx->rc4, digest, sizeof(digest));
return ((_pdfio_crypto_cb_t)_pdfioCryptoRC4Crypt);
}
else
{
*ivlen = 16;
_pdfioCryptoAESInit(&ctx->aes, digest, sizeof(digest), iv);
return ((_pdfio_crypto_cb_t)_pdfioCryptoAESDecrypt);
}
}
}
//
// '_pdfioCryptoMakeWriter()' - Setup a cryptographic context and callback for writing.
//
_pdfio_crypto_cb_t // O - Encryption callback or `NULL` for none
_pdfioCryptoMakeWriter(
pdfio_file_t *pdf, // I - PDF file
pdfio_obj_t *obj, // I - PDF object
_pdfio_crypto_ctx_t *ctx, // I - Pointer to crypto context
uint8_t *iv, // I - Buffer for initialization vector
size_t *ivlen) // IO - Size of initialization vector
{
uint8_t data[21]; /* Key data */
_pdfio_md5_t md5; /* MD5 state */
uint8_t digest[16]; /* MD5 digest value */
PDFIO_DEBUG("_pdfioCryptoMakeWriter(pdf=%p, obj=%p(%d), ctx=%p, iv=%p, ivlen=%p(%d))\n", pdf, obj, (int)obj->number, ctx, iv, ivlen, (int)*ivlen);
// Range check input...
if (!pdf)
{
*ivlen = 0;
return (NULL);
}
switch (pdf->encryption)
{
default :
*ivlen = 0;
return (NULL);
case PDFIO_ENCRYPTION_RC4_128 :
case PDFIO_ENCRYPTION_AES_128 :
// Copy the key data for the MD5 hash.
memcpy(data, pdf->file_key, sizeof(pdf->file_key));
data[16] = (uint8_t)obj->number;
data[17] = (uint8_t)(obj->number >> 8);
data[18] = (uint8_t)(obj->number >> 16);
data[19] = (uint8_t)obj->generation;
data[20] = (uint8_t)(obj->generation >> 8);
// Hash it...
_pdfioCryptoMD5Init(&md5);
_pdfioCryptoMD5Append(&md5, data, sizeof(data));
if (pdf->encryption == PDFIO_ENCRYPTION_AES_128)
_pdfioCryptoMD5Append(&md5, (const uint8_t *)"sAlT", 4);
_pdfioCryptoMD5Finish(&md5, digest);
// Initialize the RC4/AES context using the digest...
if (pdf->encryption == PDFIO_ENCRYPTION_RC4_128)
{
*ivlen = 0;
_pdfioCryptoRC4Init(&ctx->rc4, digest, sizeof(digest));
return ((_pdfio_crypto_cb_t)_pdfioCryptoRC4Crypt);
}
else
{
*ivlen = 16;
_pdfioCryptoMakeRandom(iv, *ivlen);
_pdfioCryptoAESInit(&ctx->aes, digest, sizeof(digest), iv);
return ((_pdfio_crypto_cb_t)_pdfioCryptoAESEncrypt);
}
}
}
//
// '_pdfioCryptoUnlock()' - Unlock an encrypted PDF.
//
bool // O - `true` on success, `false` otherwise
_pdfioCryptoUnlock(
pdfio_file_t *pdf, // I - PDF file
pdfio_password_cb_t password_cb, // I - Password callback or `NULL` for none
void *password_data) // I - Password callback data, if any
{
int tries; // Number of tries
const char *password = NULL; // Password to try
pdfio_dict_t *encrypt_dict; // Encrypt objection dictionary
int version, // Version value
revision, // Revision value
length; // Key length value
const char *handler, // Security handler name
*stream_filter, // Stream encryption filter
*string_filter; // String encryption filter
pdfio_dict_t *cf_dict; // CryptFilters dictionary
unsigned char *owner_key, // Owner key
*user_key, // User key
*file_id; // File ID value
size_t owner_keylen, // Length of owner key
user_keylen, // Length of user key
file_idlen; // Length of file ID
_pdfio_md5_t md5; // MD5 context
uint8_t file_digest[16]; // MD5 digest of file ID and pad
// See if we support the type of encryption specified by the Encrypt object
// dictionary...
if ((encrypt_dict = pdfioObjGetDict(pdf->encrypt_obj)) == NULL)
{
_pdfioFileError(pdf, "Unable to get encryption dictionary.");
return (false);
}
handler = pdfioDictGetName(encrypt_dict, "Filter");
version = (int)pdfioDictGetNumber(encrypt_dict, "V");
revision = (int)pdfioDictGetNumber(encrypt_dict, "R");
length = (int)pdfioDictGetNumber(encrypt_dict, "Length");
PDFIO_DEBUG("_pdfioCryptoUnlock: handler=%p(%s), version=%d, revision=%d, length=%d\n", (void *)handler, handler ? handler : "(null)", version, revision, length);
if (!handler || strcmp(handler, "Standard"))
{
_pdfioFileError(pdf, "Unsupported security handler '%s'.", handler ? handler : "(null)");
return (false);
}
if (version == 4 && revision == 4)
{
// Lookup crypt filter to see if we support it...
pdfio_dict_t *filter; // Crypt Filter
const char *cfm; // Crypt filter method
stream_filter = pdfioDictGetName(encrypt_dict, "StmF");
string_filter = pdfioDictGetName(encrypt_dict, "StrF");
cf_dict = pdfioDictGetDict(encrypt_dict, "CF");
if (!cf_dict)
{
_pdfioFileError(pdf, "Missing encryption filter dictionary.");
return (false);
}
else if (!stream_filter)
{
_pdfioFileError(pdf, "Missing stream encryption filter.");
return (false);
}
else if (!string_filter)
{
_pdfioFileError(pdf, "Missing string encryption filter.");
return (false);
}
else if (strcmp(stream_filter, string_filter))
{
_pdfioFileError(pdf, "Different stream and string encryption filters - not supported.");
return (false);
}
else if ((filter = pdfioDictGetDict(cf_dict, stream_filter)) == NULL)
{
_pdfioFileError(pdf, "Missing stream encryption filter '%s'.", stream_filter);
return (false);
}
else if ((cfm = pdfioDictGetName(filter, "CFM")) == NULL)
{
_pdfioFileError(pdf, "Missing encryption filter method.");
return (false);
}
else
{
PDFIO_DEBUG("_pdfioCryptoUnlock: CFM=\"%s\"\n", cfm);
if (length < 40 || length > 128)
length = 128; // Default to 128 bits
if (!strcmp(cfm, "V2"))
pdf->encryption = PDFIO_ENCRYPTION_RC4_128;
else if (!strcmp(cfm, "AESV2"))
pdf->encryption = PDFIO_ENCRYPTION_AES_128;
}
}
else if (version == 1 || version == 2)
{
if (revision == 2)
{
pdf->encryption = PDFIO_ENCRYPTION_RC4_40;
length = 40;
}
else if (revision == 3)
{
pdf->encryption = PDFIO_ENCRYPTION_RC4_128;
if (length < 40 || length > 128)
length = 128;
}
}
else if (version == 6 && revision == 6)
{
// TODO: Implement AES-256 - V6 R6
pdf->encryption = PDFIO_ENCRYPTION_AES_256;
length = 256;
}
PDFIO_DEBUG("_pdfioCryptoUnlock: encryption=%d, length=%d\n", pdf->encryption, length);
if (pdf->encryption == PDFIO_ENCRYPTION_NONE)
{
_pdfioFileError(pdf, "Unsupported encryption V%d R%d.", version, revision);
return (false);
}
// Grab the remaining values we need to unlock the PDF...
pdf->file_keylen = (size_t)(length / 8);
pdf->permissions = (pdfio_permission_t)pdfioDictGetNumber(encrypt_dict, "P");
PDFIO_DEBUG("_pdfioCryptoUnlock: permissions=%d\n", pdf->permissions);
owner_key = pdfioDictGetBinary(encrypt_dict, "O", &owner_keylen);
user_key = pdfioDictGetBinary(encrypt_dict, "U", &user_keylen);
if (!owner_key)
{
_pdfioFileError(pdf, "Missing owner key, unable to unlock file.");
return (false);
}
else if (owner_keylen < 32 || owner_keylen > sizeof(pdf->owner_key))
{
_pdfioFileError(pdf, "Bad %d bytes owner key, unable to unlock file.", (int)owner_keylen);
return (false);
}
PDFIO_DEBUG("_pdfioCryptoUnlock: owner_key[%d]=%02X%02X%02X%02X...%02X%02X%02X%02X\n", (int)owner_keylen, owner_key[0], owner_key[1], owner_key[2], owner_key[3], owner_key[28], owner_key[29], owner_key[30], owner_key[31]);
memcpy(pdf->owner_key, owner_key, owner_keylen);
pdf->owner_keylen = owner_keylen;
if (!user_key)
{
_pdfioFileError(pdf, "Missing user key, unable to unlock file.");
return (false);
}
else if (user_keylen < 32 || user_keylen > sizeof(pdf->user_key))
{
_pdfioFileError(pdf, "Bad %d byte user key, unable to unlock file.", (int)user_keylen);
return (false);
}
PDFIO_DEBUG("_pdfioCryptoUnlock: user_key[%d]=%02X%02X%02X%02X...%02X%02X%02X%02X\n", (int)user_keylen, user_key[0], user_key[1], user_key[2], user_key[3], user_key[28], user_key[29], user_key[30], user_key[31]);
memcpy(pdf->user_key, user_key, user_keylen);
pdf->user_keylen = user_keylen;
if ((file_id = pdfioArrayGetBinary(pdf->id_array, 0, &file_idlen)) == NULL || file_idlen < 16)
{
_pdfioFileError(pdf, "Missing or bad file ID, unable to unlock file.");
return (false);
}
// Generate a base hash from known values...
_pdfioCryptoMD5Init(&md5);
_pdfioCryptoMD5Append(&md5, pdf_passpad, 32);
_pdfioCryptoMD5Append(&md5, file_id, file_idlen);
_pdfioCryptoMD5Finish(&md5, file_digest);
// Now try to unlock the PDF...
for (tries = 0; tries < 4; tries ++)
{
if (pdf->encryption <= PDFIO_ENCRYPTION_AES_128)
{
uint8_t pad[32], // Padded password
file_key[16], // File key
user_pad[32], // Padded user password
own_user_key[32], // Calculated user key
pdf_user_key[32]; // Decrypted user key
// Pad the supplied password, if any...
pad_password(password, pad);
// Generate keys to see if things match...
PDFIO_DEBUG("_pdfioCryptoUnlock: Trying %02X%02X%02X%02X...%02X%02X%02X%02X\n", pad[0], pad[1], pad[2], pad[3], pad[28], pad[29], pad[30], pad[31]);
PDFIO_DEBUG("_pdfioCryptoUnlock: P=%d\n", pdf->permissions);
PDFIO_DEBUG("_pdfioCryptoUnlock: Fid(%d)=%02X%02X%02X%02X...%02X%02X%02X%02X\n", (int)file_idlen, file_id[0], file_id[1], file_id[2], file_id[3], file_id[12], file_id[13], file_id[14], file_id[15]);
make_owner_key(pdf->encryption, pad, pdf->owner_key, user_pad);
PDFIO_DEBUG("_pdfioCryptoUnlock: Upad=%02X%02X%02X%02X...%02X%02X%02X%02X\n", user_pad[0], user_pad[1], user_pad[2], user_pad[3], user_pad[28], user_pad[29], user_pad[30], user_pad[31]);
make_file_key(pdf->encryption, pdf->permissions, file_id, file_idlen, user_pad, pdf->owner_key, file_key);
PDFIO_DEBUG("_pdfioCryptoUnlock: Fown=%02X%02X%02X%02X...%02X%02X%02X%02X\n", file_key[0], file_key[1], file_key[2], file_key[3], file_key[12], file_key[13], file_key[14], file_key[15]);
make_user_key(file_id, file_idlen, own_user_key);
PDFIO_DEBUG("_pdfioCryptoUnlock: U=%02X%02X%02X%02X...%02X%02X%02X%02X\n", pdf->user_key[0], pdf->user_key[1], pdf->user_key[2], pdf->user_key[3], pdf->user_key[28], pdf->user_key[29], pdf->user_key[30], pdf->user_key[31]);
PDFIO_DEBUG("_pdfioCryptoUnlock: Uown=%02X%02X%02X%02X...%02X%02X%02X%02X\n", own_user_key[0], own_user_key[1], own_user_key[2], own_user_key[3], own_user_key[28], own_user_key[29], own_user_key[30], own_user_key[31]);
if (!memcmp(own_user_key, pdf->user_key, sizeof(own_user_key)))
{
// Matches!
memcpy(pdf->file_key, file_key, sizeof(pdf->file_key));
memcpy(pdf->password, pad, sizeof(pdf->password));
return (true);
}
// Not the owner password, try the user password...
make_file_key(pdf->encryption, pdf->permissions, file_id, file_idlen, pad, pdf->owner_key, file_key);
PDFIO_DEBUG("_pdfioCryptoUnlock: Fuse=%02X%02X%02X%02X...%02X%02X%02X%02X\n", file_key[0], file_key[1], file_key[2], file_key[3], file_key[12], file_key[13], file_key[14], file_key[15]);
make_user_key(file_id, file_idlen, own_user_key);
memcpy(pdf_user_key, pdf->user_key, sizeof(pdf_user_key));
decrypt_user_key(pdf->encryption, file_key, pdf_user_key);
PDFIO_DEBUG("_pdfioCryptoUnlock: Uuse=%02X%02X%02X%02X...%02X%02X%02X%02X\n", user_key[0], user_key[1], user_key[2], user_key[3], user_key[28], user_key[29], user_key[30], user_key[31]);
PDFIO_DEBUG("_pdfioCryptoUnlock: Updf=%02X%02X%02X%02X...%02X%02X%02X%02X\n", pdf_user_key[0], pdf_user_key[1], pdf_user_key[2], pdf_user_key[3], pdf_user_key[28], pdf_user_key[29], pdf_user_key[30], pdf_user_key[31]);
if (!memcmp(pad, pdf_user_key, 32) || !memcmp(own_user_key, pdf_user_key, 16))
{
// Matches!
memcpy(pdf->file_key, file_key, sizeof(pdf->file_key));
memcpy(pdf->password, pad, sizeof(pdf->password));
return (true);
}
}
else
{
// TODO: Implement AES-256 security handler
_pdfioFileError(pdf, "Unable to unlock AES-256 encrypted file at this time.");
return (false);
}
// If we get here we need to try another password...
if (password_cb)
password = (password_cb)(password_data, pdf->filename);
if (!password)
break;
}
_pdfioFileError(pdf, "Unable to unlock PDF file.");
return (false);
}
//
// 'decrypt_user_key()' - Decrypt the user key.
//
static void
decrypt_user_key(
pdfio_encryption_t encryption, // I - Type of encryption
const uint8_t *file_key, // I - File encryption key
uint8_t user_key[32]) // IO - User key
{
size_t i, j; // Looping vars
_pdfio_rc4_t rc4; // RC4 encryption context
if (encryption == PDFIO_ENCRYPTION_RC4_40)
{
// Encrypt the result once...
_pdfioCryptoRC4Init(&rc4, file_key, 5);
_pdfioCryptoRC4Crypt(&rc4, user_key, user_key, 32);
}
else
{
// Encrypt the result 20 times...
uint8_t key[16]; // Current encryption key
for (i = 19; i > 0; i --)
{
// XOR each byte in the key with the loop counter...
for (j = 0; j < 16; j ++)
key[j] = (uint8_t)(file_key[j] ^ i);
_pdfioCryptoRC4Init(&rc4, key, 16);
_pdfioCryptoRC4Crypt(&rc4, user_key, user_key, 32);
}
_pdfioCryptoRC4Init(&rc4, file_key, 16);
_pdfioCryptoRC4Crypt(&rc4, user_key, user_key, 32);
}
}
//
// 'encrypt_user_key()' - Encrypt the user key.
//
static void
encrypt_user_key(
pdfio_encryption_t encryption, // I - Type of encryption
const uint8_t *file_key, // I - File encryption key
uint8_t user_key[32]) // IO - User key
{
size_t i, j; // Looping vars
_pdfio_rc4_t rc4; // RC4 encryption context
if (encryption == PDFIO_ENCRYPTION_RC4_40)
{
// Encrypt the result once...
_pdfioCryptoRC4Init(&rc4, file_key, 5);
_pdfioCryptoRC4Crypt(&rc4, user_key, user_key, 32);
}
else
{
// Encrypt the result 20 times...
uint8_t key[16]; // Current encryption key
for (i = 0; i < 20; i ++)
{
// XOR each byte in the key with the loop counter...
for (j = 0; j < 16; j ++)
key[j] = (uint8_t)(file_key[j] ^ i);
_pdfioCryptoRC4Init(&rc4, key, 16);
_pdfioCryptoRC4Crypt(&rc4, user_key, user_key, 32);
}
}
}
//
// 'make_file_key()' - Make the file encryption key.
//
static void
make_file_key(
pdfio_encryption_t encryption, // I - Type of encryption
pdfio_permission_t permissions, // I - File permissions
const unsigned char *file_id, // I - File ID value
size_t file_idlen, // I - Length of file ID
const uint8_t *user_pad, // I - Padded user password
const uint8_t *owner_key, // I - Owner key
uint8_t file_key[16]) // O - Encryption key
{
size_t i; // Looping var
uint8_t perm_bytes[4]; // Permissions bytes
_pdfio_md5_t md5; // MD5 context
uint8_t digest[16]; // 128-bit MD5 digest
perm_bytes[0] = (uint8_t)permissions;
perm_bytes[1] = (uint8_t)(permissions >> 8);
perm_bytes[2] = (uint8_t)(permissions >> 16);
perm_bytes[3] = (uint8_t)(permissions >> 24);
_pdfioCryptoMD5Init(&md5);
_pdfioCryptoMD5Append(&md5, user_pad, 32);
_pdfioCryptoMD5Append(&md5, owner_key, 32);
_pdfioCryptoMD5Append(&md5, perm_bytes, 4);
_pdfioCryptoMD5Append(&md5, file_id, file_idlen);
_pdfioCryptoMD5Finish(&md5, digest);
if (encryption != PDFIO_ENCRYPTION_RC4_40)
{
// MD5 the result 50 times..
for (i = 0; i < 50; i ++)
{
_pdfioCryptoMD5Init(&md5);
_pdfioCryptoMD5Append(&md5, digest, 16);