forked from georgmartius/vid.stab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
localmotion2transform.c
342 lines (310 loc) · 10.8 KB
/
localmotion2transform.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*
* localmotion2transform.c
*
* Copyright (C) Georg Martius - January 2013
* georg dot martius at web dot de
*
* This file is part of vid.stab video stabilization library
*
* vid.stab is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License,
* as published by the Free Software Foundation; either version 2, or
* (at your option) any later version.
*
* vid.stab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include "localmotion2transform.h"
#include "transformtype_operations.h"
#include <assert.h>
#include <string.h>
/* #include <sys/time.h> */
/* long timeOfDayinMS() { */
/* struct timeval t; */
/* gettimeofday(&t, 0); */
/* return t.tv_sec*1000 + t.tv_usec/1000; */
/* } */
int vsLocalmotions2Transforms(VSTransformData* td,
const VSManyLocalMotions* motions,
VSTransformations* trans ){
int len = vs_vector_size(motions);
assert(trans->len==0 && trans->ts == 0);
trans->ts = vs_malloc(sizeof(VSTransform)*len );
/* long start= timeOfDayinMS(); */
FILE *f=0;
if(td->conf.storeTransforms){
f = fopen("global_motions.trf","w");
}
if(td->conf.simpleMotionCalculation==0){
for(int i=0; i< vs_vector_size(motions); i++) {
trans->ts[i]=vsMotionsToTransform(td,VSMLMGet(motions,i), f);
}
}else{
for(int i=0; i< vs_vector_size(motions); i++) {
trans->ts[i]=vsSimpleMotionsToTransform(td->fiSrc, td->conf.modName,VSMLMGet(motions,i));
}
}
trans->len=len;
/* long end = timeOfDayinMS(); */
/* vs_log_info(td->conf.modName, "Localmotions2Transform (%i) with %i frames took %i ms\n", */
/* td->conf.simpleMotionCalculation, len, end-start); */
if(f) fclose(f);
return VS_OK;
}
VSArray vsTransformToArray(const VSTransform* t){
VSArray a = vs_array_new(4);
a.dat[0] = t->x;
a.dat[1] = t->y;
a.dat[2] = t->alpha;
a.dat[3] = t->zoom;
return a;
}
VSTransform vsArrayToTransform(VSArray a){
return new_transform(a.dat[0],a.dat[1],a.dat[2],a.dat[3],0,0,0);
}
struct VSGradientDat {
VSTransformData* td;
const LocalMotions* motions;
VSArray missmatches; // if negative then local motion is ignored
};
double calcTransformQuality(VSArray params, void* dat){
struct VSGradientDat* gd= (struct VSGradientDat*) dat;
const LocalMotions* motions = gd->motions;
int num_motions=vs_vector_size(motions);
VSTransform t = vsArrayToTransform(params);
double error=0;
PreparedTransform pt= prepare_transform(&t, &gd->td->fiSrc);
int num = 1; // we start with 1 to avoid div by zero
for (int i = 0; i < num_motions; i++) {
if(gd->missmatches.dat[i]>=0){
LocalMotion* m = LMGet(motions,i);
double vx,vy;
transform_vec_double(&vx, &vy, &pt, (Vec*)&m->f);
vx -= m->f.x; vy -= m->f.y;
double e = sqr(vx - m->v.x) + sqr(vy - m->v.y);
gd->missmatches.dat[i]=e;
error += e;
num++;
}
}
// 1 pixel translation missmatch is roughly (with size 500):
// alpha=0.11 (degree), zoom=0.2; The zoom is however often much larger, so less penalty.
return error/num + fabs(t.alpha)/5.0 + fabs(t.zoom)/500.0;
}
double intMean(const int* ds, int len) {
double sum=0;
for (int i = 0; i < len; i++) sum += ds[i];
return sum / len;
}
// only calcates means transform to initialise gradient descent
VSTransform meanMotions(VSTransformData* td, const LocalMotions* motions){
int len = vs_vector_size(motions);
int* xs = localmotions_getx(motions);
int* ys = localmotions_gety(motions);
VSTransform t = null_transform();
if(motions==0 || len==0) {
t.extra = 1; // prob. blank frame or too low contrast, ignore later
return t;
}
t.x = intMean(xs,len);
t.y = intMean(ys,len);
vs_free(xs);
vs_free(ys);
return t;
}
/* Disables those fields (mask = -1) whose (miss)quality is high.
@param mask: fields masks (<0 means disabled)
@param missqualities: measure for each field (larger is worse)
@param stddevs: x standard deviations to exclude
Both array have to be of the same length.
@return number of disabled fields
*/
int disableFields(VSArray mask, VSArray missqualities, double stddevs){
assert(mask.len == missqualities.len);
// first we throw away those fields that match badely (during motion detection)
double mu = mean(missqualities.dat, missqualities.len);
double sigma = stddev(missqualities.dat, missqualities.len, mu);
double thresh = mu + stddevs * sigma;
int cnt=0;
for(int i=0; i< mask.len; i++){
if(missqualities.dat[i]>thresh){
mask.dat[i]=-1.0; // disable field
cnt++;
}
}
return cnt;
}
VSTransform vsMotionsToTransform(VSTransformData* td,
const LocalMotions* motions,
FILE* f){
VSTransform t = meanMotions(td, motions);
if(motions==0 || vs_vector_size(motions)==0){
if (f) fprintf(f,"0 0 0 0 0 %i\n# no fields\n", t.extra);
return t;
}
VSArray missmatches = vs_array_new(vs_vector_size(motions));
VSArray params = vsTransformToArray(&t);
double residual;
struct VSGradientDat dat;
dat.motions = motions;
dat.td = td;
dat.missmatches = missmatches;
// first we throw away those fields that match badely (during motion detection)
VSArray matchQualities = localmotionsGetMatch(motions);
int dis1=disableFields(missmatches, matchQualities, 1.5);
vs_array_free(matchQualities);
VSArray result;
double ss[] = {0.2, 0.2, 0.00005, 0.1};
int k;
int dis2=0;
for(k=0; k<3; k++){
// optimize params to minimize transform quality (12 steps per dimension)
result = vsGradientDescent(calcTransformQuality, params, &dat,
16, vs_array(ss,4), 0.01, &residual);
vs_array_free(params);
// now we need to ignore the fields that don't fit well (e.g. moving objects)
// cut off everthing above 1 std. dev. for skewed distributions
// this will cut off the tail
// do this only two times (3 gradient optimizations in total)
if((k==0 && residual>0.1) || (k==1 && residual>20)){
dis2 += disableFields(missmatches, missmatches, 1.0);
params = result;
} else break;
}
if(td->conf.verbose & VS_DEBUG)
vs_log_info(td->conf.modName, "disabled (%i+%i)/%i,\tresidual: %f (%i)\n",
dis1, dis2, vs_vector_size(motions), residual, k+1);
t = vsArrayToTransform(result);
vs_array_free(result);
vs_array_free(missmatches);
// check if sufficiently good match was achieved:
if(residual>100){ // test threshold.
t.extra=1;
}
if(f){
fprintf(f,"0 %f %f %f %f %i\n#\t\t\t\t\t %f %i\n", t.x, t.y, t.alpha, t.zoom, t.extra,
residual, k + 1);
}
if(!td->conf.smoothZoom)
t.zoom=0;
return t;
}
/* n-dimensional general purpose gradient descent algorithm */
VSArray vsGradientDescent(double (*eval)(VSArray, void*),
VSArray params, void* dat,
int N, VSArray stepsizes, double threshold, double* residual){
int dim=params.len;
double v = eval(params, dat);
VSArray x = vs_array_copy(params);
VSArray grad = vs_array_new(dim);
assert(stepsizes.len == params.len);
for(int i=0; i< N*dim && v > threshold; i++){
int k=i%dim;
VSArray x2 = vs_array_copy(x);
double h = rand()%2 ? 1e-6 : -1e-6;
x2.dat[k]+=h;
double v2 = eval(x2, dat);
vs_array_zero(&grad);
grad.dat[k] = (v - v2)/h;
vs_array_plus(&x2, x, *vs_array_scale(&x2, grad, stepsizes.dat[k]));
v2 = eval(x2, dat);
if(v2 < v){
//fprintf(stderr,"+");
vs_array_free(x);
x = x2;
v = v2;
stepsizes.dat[k]*=1.2; // increase stepsize (4 successful steps will double it)
}else{ // overshoot: reduce stepsize and don't do the step
//fprintf(stderr,".");
stepsizes.dat[k]/=2.0;
vs_array_free(x2);
}
//if(k==3) fprintf(stderr," ");
}
vs_array_free(grad);
vs_array_free(stepsizes);
if(residual != NULL) *residual=v;
return x;
}
/* *** old calculation ***/
/* calculates rotation angle for the given transform and
* field with respect to the given center-point
*/
double vsCalcAngle(const LocalMotion* lm, int center_x, int center_y){
// we better ignore fields that are to close to the rotation center
if (abs(lm->f.x - center_x) + abs(lm->f.y - center_y) < lm->f.size*2) {
return 0;
} else {
// double r = sqrt(lm->f.x*lm->f.x + lm->f.y*lm->f.y);
double a1 = atan2(lm->f.y - center_y, lm->f.x - center_x);
double a2 = atan2(lm->f.y - center_y + lm->v.y,
lm->f.x - center_x + lm->v.x);
double diff = a2 - a1;
return (diff > M_PI) ? diff - 2 * M_PI : ((diff < -M_PI) ? diff + 2
* M_PI : diff);
}
}
VSTransform vsSimpleMotionsToTransform(VSFrameInfo fi, const char* modName,
const LocalMotions* motions){
int center_x = 0;
int center_y = 0;
VSTransform t = null_transform();
if(motions==0) return t;
int num_motions=vs_vector_size(motions);
double *angles = (double*) vs_malloc(sizeof(double) * num_motions);
LocalMotion meanmotion;
int i;
if(num_motions < 1)
return t;
// calc center point of all remaining fields
for (i = 0; i < num_motions; i++) {
center_x += LMGet(motions,i)->f.x;
center_y += LMGet(motions,i)->f.y;
}
center_x /= num_motions;
center_y /= num_motions;
// cleaned mean
meanmotion = cleanmean_localmotions(motions);
// figure out angle
if (num_motions < 6) {
// the angle calculation is inaccurate for 5 and less fields
t.alpha = 0;
} else {
for (i = 0; i < num_motions; i++) {
// substract avg and calc angle
LocalMotion m = sub_localmotion(LMGet(motions,i),&meanmotion);
angles[i] = vsCalcAngle(&m, center_x, center_y);
}
double min, max;
t.alpha = -cleanmean(angles, num_motions, &min, &max);
if (max - min > 1.0) {
t.alpha = 0;
vs_log_info(modName, "too large variation in angle(%f)\n",
max-min);
}
}
vs_free(angles);
// compensate for off-center rotation
double p_x = (center_x - fi.width / 2);
double p_y = (center_y - fi.height / 2);
t.x = meanmotion.v.x + (cos(t.alpha) - 1) * p_x - sin(t.alpha) * p_y;
t.y = meanmotion.v.y + sin(t.alpha) * p_x + (cos(t.alpha) - 1) * p_y;
return t;
}
/*
* Local variables:
* c-file-style: "stroustrup"
* c-file-offsets: ((case-label . *) (statement-case-intro . *))
* indent-tabs-mode: nil
* c-basic-offset: 2 t
* End:
*
* vim: expandtab shiftwidth=2:
*/