forked from georgmartius/vid.stab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformfixedpoint.c
404 lines (375 loc) · 15.1 KB
/
transformfixedpoint.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/*
* transformfixedpoint.c
*
* Fixed point implementation of image transformations (see also transformfloat.c/h)
*
* Copyright (C) Georg Martius - June 2011
* georg dot martius at web dot de
*
* This file is part of vid.stab video stabilization library
*
* vid.stab is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License,
* as published by the Free Software Foundation; either version 2, or
* (at your option) any later version.
*
* vid.stab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
*/
#include "transformfixedpoint.h"
#include "transform.h"
#include "transformtype_operations.h"
//#include <math.h>
//#include <libgen.h>
#define iToFp8(v) ((v)<<8)
#define fToFp8(v) ((int32_t)((v)*((float)0xFF)))
#define iToFp16(v) ((v)<<16)
#define fToFp16(v) ((int32_t)((v)*((double)0xFFFF)))
#define fp16To8(v) ((v)>>8)
//#define fp16To8(v) ( (v) && 0x80 == 1 ? ((v)>>8 + 1) : ((v)>>8) )
#define fp24To8(v) ((v)>>16)
#define fp8ToI(v) ((v)>>8)
#define fp16ToI(v) ((v)>>16)
#define fp8ToF(v) ((v)/((double)(1<<8)))
#define fp16ToF(v) ((v)/((double)(1<<16)))
// #define fp8ToIRound(v) ( (((v)>>7) & 0x1) == 0 ? ((v)>>8) : ((v)>>8)+1 )
#define fp8_0_5 (1<<7)
#define fp8ToIRound(v) (((v) + fp8_0_5) >> 7)
//#define fp16ToIRound(v) ( (((v)>>15) & 0x1) == 0 ? ((v)>>16) : ((v)>>16)+1 )
#define fp16_0_5 (1<<15)
#define fp16ToIRound(v) (((v) + fp16_0_5) >> 16)
/** interpolateBiLinBorder: bi-linear interpolation function that also works at the border.
This is used by many other interpolation methods at and outsize the border, see interpolate */
inline void interpolateBiLinBorder(uint8_t *rv, fp16 x, fp16 y,
const uint8_t *img, int img_linesize,
int32_t width, int32_t height, uint8_t def)
{
int32_t ix_f = fp16ToI(x);
int32_t iy_f = fp16ToI(y);
int32_t ix_c = ix_f + 1;
int32_t iy_c = iy_f + 1;
if (ix_f < 0 || ix_c >= width || iy_f < 0 || iy_c >= height) {
int32_t w = 10; // number of pixels to blur out the border pixel outwards
int32_t xl = - w - ix_f;
int32_t yl = - w - iy_f;
int32_t xh = ix_c - w - width;
int32_t yh = iy_c - w - height;
int32_t c = VS_MAX(VS_MIN(VS_MAX(xl, VS_MAX(yl, VS_MAX(xh, yh))),w),0);
// pixel at border of source image
short val_border = PIX(img, img_linesize, VS_MAX(VS_MIN(ix_f, width-1),0),
VS_MAX(VS_MIN(iy_f, height-1),0));
int32_t res = (def * c + val_border * (w - c)) / w;
*rv = (res >= 0) ? ((res < 255) ? res : 255) : 0;
}else{
short v1 = PIXEL(img, img_linesize, ix_c, iy_c, width, height, def);
short v2 = PIXEL(img, img_linesize, ix_c, iy_f, width, height, def);
short v3 = PIXEL(img, img_linesize, ix_f, iy_c, width, height, def);
short v4 = PIXEL(img, img_linesize, ix_f, iy_f, width, height, def);
fp16 x_f = iToFp16(ix_f);
fp16 x_c = iToFp16(ix_c);
fp16 y_f = iToFp16(iy_f);
fp16 y_c = iToFp16(iy_c);
fp16 s = fp16To8(v1*(x - x_f)+v3*(x_c - x))*fp16To8(y - y_f) +
fp16To8(v2*(x - x_f) + v4*(x_c - x))*fp16To8(y_c - y) + 1;
int32_t res = fp16ToIRound(s);
*rv = (res >= 0) ? ((res < 255) ? res : 255) : 0;
}
}
/** taken from http://en.wikipedia.org/wiki/Bicubic_interpolation for alpha=-0.5
in matrix notation:
a0-a3 are the neigthboring points where the target point is between a1 and a2
t is the point of interpolation (position between a1 and a2) value between 0 and 1
| 0, 2, 0, 0 | |a0|
|-1, 0, 1, 0 | |a1|
(1,t,t^2,t^3) | 2,-5, 4,-1 | |a2|
|-1, 3,-3, 1 | |a3|
*/
/* inline static short bicub_kernel(fp16 t, short a0, short a1, short a2, short a3){ */
/* // (2*a1 + t*((-a0+a2) + t*((2*a0-5*a1+4*a2-a3) + t*(-a0+3*a1-3*a2+a3) )) ) / 2; */
/* return ((iToFp16(2*a1) + t*(-a0+a2 */
/* + fp16ToI(t*((2*a0-5*a1+4*a2-a3) */
/* + fp16ToI(t*(-a0+3*a1-3*a2+a3)) )) ) */
/* ) ) >> 17; */
/* } */
inline static short bicub_kernel(fp16 t, short a0, short a1, short a2, short a3){
// (2*a1 + t*((-a0+a2) + t*((2*a0-5*a1+4*a2-a3) + t*(-a0+3*a1-3*a2+a3) )) ) / 2;
// we add 1/2 because of truncation errors
return fp16ToIRound((iToFp16(2*a1) + t*(-a0+a2
+ fp16ToIRound(t*((2*a0-5*a1+4*a2-a3)
+ fp16ToIRound(t*(-a0+3*a1-3*a2+a3)) )) )
) >> 1);
}
/** interpolateBiCub: bi-cubic interpolation function using 4x4 pixel, see interpolate */
inline void interpolateBiCub(uint8_t *rv, fp16 x, fp16 y,
const uint8_t *img, int img_linesize,
int width, int height, uint8_t def)
{
// do a simple linear interpolation at the border
int32_t ix_f = fp16ToI(x);
int32_t iy_f = fp16ToI(y);
if (unlikely(ix_f < 1 || ix_f > width - 3 || iy_f < 1 || iy_f > height - 3)) {
interpolateBiLinBorder(rv, x, y, img, img_linesize, width, height, def);
} else {
fp16 x_f = iToFp16(ix_f);
fp16 y_f = iToFp16(iy_f);
fp16 tx = x-x_f;
short v1 = bicub_kernel(tx,
PIX(img, img_linesize, ix_f-1, iy_f-1),
PIX(img, img_linesize, ix_f, iy_f-1),
PIX(img, img_linesize, ix_f+1, iy_f-1),
PIX(img, img_linesize, ix_f+2, iy_f-1));
short v2 = bicub_kernel(tx,
PIX(img, img_linesize, ix_f-1, iy_f),
PIX(img, img_linesize, ix_f, iy_f),
PIX(img, img_linesize, ix_f+1, iy_f),
PIX(img, img_linesize, ix_f+2, iy_f));
short v3 = bicub_kernel(tx,
PIX(img, img_linesize, ix_f-1, iy_f+1),
PIX(img, img_linesize, ix_f, iy_f+1),
PIX(img, img_linesize, ix_f+1, iy_f+1),
PIX(img, img_linesize, ix_f+2, iy_f+1));
short v4 = bicub_kernel(tx,
PIX(img, img_linesize, ix_f-1, iy_f+2),
PIX(img, img_linesize, ix_f, iy_f+2),
PIX(img, img_linesize, ix_f+1, iy_f+2),
PIX(img, img_linesize, ix_f+2, iy_f+2));
short res = bicub_kernel(y-y_f, v1, v2, v3, v4);
*rv = (res >= 0) ? ((res < 255) ? res : 255) : 0;
}
}
/** interpolateBiLin: bi-linear interpolation function, see interpolate */
inline void interpolateBiLin(uint8_t *rv, fp16 x, fp16 y,
const uint8_t *img, int img_linesize,
int32_t width, int32_t height, uint8_t def)
{
int32_t ix_f = fp16ToI(x);
int32_t iy_f = fp16ToI(y);
if (unlikely(ix_f < 0 || ix_f > width - 2 || iy_f < 0 || iy_f > height - 2)) {
interpolateBiLinBorder(rv, x, y, img, img_linesize, width, height, def);
} else {
int32_t ix_c = ix_f + 1;
int32_t iy_c = iy_f + 1;
short v1 = PIX(img, img_linesize, ix_c, iy_c);
short v2 = PIX(img, img_linesize, ix_c, iy_f);
short v3 = PIX(img, img_linesize, ix_f, iy_c);
short v4 = PIX(img, img_linesize, ix_f, iy_f);
fp16 x_f = iToFp16(ix_f);
fp16 x_c = iToFp16(ix_c);
fp16 y_f = iToFp16(iy_f);
fp16 y_c = iToFp16(iy_c);
fp16 s = fp16To8(v1*(x - x_f) + v3*(x_c - x))*fp16To8(y - y_f) +
fp16To8(v2*(x - x_f) + v4*(x_c - x))*fp16To8(y_c - y);
// it is underestimated due to truncation, so we add one
short res = fp16ToI(s);
*rv = (res >= 0) ? ((res < 255) ? res+1 : 255) : 0;
}
}
/** interpolateLin: linear (only x) interpolation function, see interpolate */
inline void interpolateLin(uint8_t *rv, fp16 x, fp16 y,
const uint8_t *img, int img_linesize,
int width, int height, uint8_t def)
{
int32_t ix_f = fp16ToI(x);
int32_t ix_c = ix_f + 1;
fp16 x_c = iToFp16(ix_c);
fp16 x_f = iToFp16(ix_f);
int y_n = fp16ToIRound(y);
short v1 = PIXEL(img, img_linesize, ix_c, y_n, width, height, def);
short v2 = PIXEL(img, img_linesize, ix_f, y_n, width, height, def);
fp16 s = v1*(x - x_f) + v2*(x_c - x);
short res = fp16ToI(s);
*rv = (res >= 0) ? ((res < 255) ? res : 255) : 0;
}
/** interpolateZero: nearest neighbor interpolation function, see interpolate */
inline void interpolateZero(uint8_t *rv, fp16 x, fp16 y,
const uint8_t *img, int img_linesize,
int width, int height, uint8_t def)
{
int32_t ix_n = fp16ToIRound(x);
int32_t iy_n = fp16ToIRound(y);
int32_t res = PIXEL(img, img_linesize, ix_n, iy_n, width, height, def);
*rv = (res >= 0) ? ((res < 255) ? res : 255) : 0;
}
/**
* interpolateN: Bi-linear interpolation function for N channel image.
*
* Parameters:
* rv: destination pixel (call by reference)
* x,y: the source coordinates in the image img. Note this
* are real-value coordinates, that's why we interpolate
* img: source image
* width,height: dimension of image
* N: number of channels
* channel: channel number (0..N-1)
* def: default value if coordinates are out of range
* Return value: None
*/
inline void interpolateN(uint8_t *rv, fp16 x, fp16 y,
const uint8_t *img, int img_linesize,
int width, int height,
uint8_t N, uint8_t channel,
uint8_t def)
{
int32_t ix_f = fp16ToI(x);
int32_t iy_f = fp16ToI(y);
if (ix_f < 0 || ix_f > width-1 || iy_f < 0 || iy_f > height - 1) {
*rv = def;
} else {
int32_t ix_c = ix_f + 1;
int32_t iy_c = iy_f + 1;
short v1 = PIXN(img, img_linesize, ix_c, iy_c, N, channel);
short v2 = PIXN(img, img_linesize, ix_c, iy_f, N, channel);
short v3 = PIXN(img, img_linesize, ix_f, iy_c, N, channel);
short v4 = PIXN(img, img_linesize, ix_f, iy_f, N, channel);
fp16 x_f = iToFp16(ix_f);
fp16 x_c = iToFp16(ix_c);
fp16 y_f = iToFp16(iy_f);
fp16 y_c = iToFp16(iy_c);
fp16 s = fp16To8(v1*(x - x_f)+v3*(x_c - x))*fp16To8(y - y_f) +
fp16To8(v2*(x - x_f) + v4*(x_c - x))*fp16To8(y_c - y);
int32_t res = fp16ToIRound(s);
*rv = (res >= 0) ? ((res < 255) ? res : 255) : 0;
}
}
/**
* transformPacked: applies current transformation to frame
* Parameters:
* td: private data structure of this filter
* Return value:
* 0 for failture, 1 for success
* Preconditions:
* The frame must be in Packed format
*/
int transformPacked(VSTransformData* td, VSTransform t)
{
int x = 0, y = 0, k = 0;
uint8_t *D_1, *D_2;
D_1 = td->src.data[0];
D_2 = td->destbuf.data[0];
fp16 c_s_x = iToFp16(td->fiSrc.width/2);
fp16 c_s_y = iToFp16(td->fiSrc.height/2);
int32_t c_d_x = td->fiDest.width/2;
int32_t c_d_y = td->fiDest.height/2;
/* for each pixel in the destination image we calc the source
* coordinate and make an interpolation:
* p_d = c_d + M(p_s - c_s) + t
* where p are the points, c the center coordinate,
* _s source and _d destination,
* t the translation, and M the rotation matrix
* p_s = M^{-1}(p_d - c_d - t) + c_s
*/
float z = 1.0-t.zoom/100.0;
fp16 zcos_a = fToFp16(z*cos(-t.alpha)); // scaled cos
fp16 zsin_a = fToFp16(z*sin(-t.alpha)); // scaled sin
fp16 c_tx = c_s_x - fToFp16(t.x);
fp16 c_ty = c_s_y - fToFp16(t.y);
int channels = td->fiSrc.bytesPerPixel;
/* All channels */
for (y = 0; y < td->fiDest.height; y++) {
int32_t y_d1 = (y - c_d_y);
for (x = 0; x < td->fiDest.width; x++) {
int32_t x_d1 = (x - c_d_x);
fp16 x_s = zcos_a * x_d1 + zsin_a * y_d1 + c_tx;
fp16 y_s = -zsin_a * x_d1 + zcos_a * y_d1 + c_ty;
for (k = 0; k < channels; k++) { // iterate over colors
uint8_t *dest = &D_2[x + y * td->destbuf.linesize[0]+k];
interpolateN(dest, x_s, y_s, D_1, td->src.linesize[0],
td->fiSrc.width, td->fiSrc.height,
channels, k, td->conf.crop ? 16 : *dest);
}
}
}
return VS_OK;
}
/**
* transformPlanar: applies current transformation to frame
*
* Parameters:
* td: private data structure of this filter
* Return value:
* 0 for failture, 1 for success
* Preconditions:
* The frame must be in Planar format
*
* Fixed-point format 32 bit integer:
* for image coords we use val<<8
* for angle and zoom we use val<<16
*
*/
int transformPlanar(VSTransformData* td, VSTransform t)
{
int32_t x = 0, y = 0;
uint8_t *dat_1, *dat_2;
if (t.alpha==0 && t.x==0 && t.y==0 && t.zoom == 0){
if(vsFramesEqual(&td->src,&td->destbuf))
return VS_OK; // noop
else {
vsFrameCopy(&td->destbuf, &td->src, &td->fiSrc);
return VS_OK;
}
}
int plane;
for(plane=0; plane< td->fiSrc.planes; plane++){
dat_1 = td->src.data[plane];
dat_2 = td->destbuf.data[plane];
int wsub = vsGetPlaneWidthSubS(&td->fiSrc,plane);
int hsub = vsGetPlaneHeightSubS(&td->fiSrc,plane);
int dw = CHROMA_SIZE(td->fiDest.width , wsub);
int dh = CHROMA_SIZE(td->fiDest.height, hsub);
int sw = CHROMA_SIZE(td->fiSrc.width , wsub);
int sh = CHROMA_SIZE(td->fiSrc.height , hsub);
uint8_t black = plane==0 ? 0 : 0x80;
fp16 c_s_x = iToFp16(sw / 2);
fp16 c_s_y = iToFp16(sh / 2);
int32_t c_d_x = dw / 2;
int32_t c_d_y = dh / 2;
float z = 1.0-t.zoom/100.0;
fp16 zcos_a = fToFp16(z*cos(-t.alpha)); // scaled cos
fp16 zsin_a = fToFp16(z*sin(-t.alpha)); // scaled sin
fp16 c_tx = c_s_x - (fToFp16(t.x) >> wsub);
fp16 c_ty = c_s_y - (fToFp16(t.y) >> hsub);
/* for each pixel in the destination image we calc the source
* coordinate and make an interpolation:
* p_d = c_d + M(p_s - c_s) + t
* where p are the points, c the center coordinate,
* _s source and _d destination,
* t the translation, and M the rotation and scaling matrix
* p_s = M^{-1}(p_d - c_d - t) + c_s
*/
for (y = 0; y < dh; y++) {
// swapping of the loops brought 15% performace gain
int32_t y_d1 = (y - c_d_y);
for (x = 0; x < dw; x++) {
int32_t x_d1 = (x - c_d_x);
fp16 x_s = zcos_a * x_d1 + zsin_a * y_d1 + c_tx;
fp16 y_s = -zsin_a * x_d1 + zcos_a * y_d1 + c_ty;
uint8_t *dest = &dat_2[x + y * td->destbuf.linesize[plane]];
// inlining the interpolation function would bring 10%
// (but then we cannot use the function pointer anymore...)
td->interpolate(dest, x_s, y_s, dat_1,
td->src.linesize[plane], sw, sh,
td->conf.crop ? black : *dest);
}
}
}
return VS_OK;
}
/*
* Local variables:
* c-file-style: "stroustrup"
* c-file-offsets: ((case-label . *) (statement-case-intro . *))
* indent-tabs-mode: nil
* c-basic-offset: 2 t
*
* End:
*
* vim: expandtab shiftwidth=2:
*/