-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathweb-duogemoxing.py
73 lines (61 loc) · 2.11 KB
/
web-duogemoxing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# coding:utf-8
from flask import Flask,render_template,request,redirect,url_for
from werkzeug.utils import secure_filename
import os
import tensorflow as tf
from nnets.vgg import vgg
import numpy as np
from PIL import Image, ImageFont, ImageDraw,ImageTk
from Predict import predict
app = Flask(__name__)
'''导入模型'''
@app.route('/')
def about():
return redirect(url_for('upload'))
@app.route('/upload', methods=['POST', 'GET'])
def upload():
if request.method == 'POST':
f = request.files['file']
basepath = os.path.dirname(__file__) # 当前文件所在路径
upload_path = os.path.join(basepath,'static\\uploads',f.filename) #注意:没有的文件夹一定要先创建,不然会提示没有该路径
f.save(upload_path)
data = Image.open(upload_path)
'''跟文件名没有关系'''
pred = predict(4,'models/vgg.ckpt',data)
pred = np.squeeze(pred)
pred = pred.tolist()
fenlei = ''
index = pred.index(max(pred))
'''获取最大值进行判断'''
if index == 0:
fenlei = '草体'
elif index == 2:
fenlei = '篆体'
elif index == 3:
fenlei = '隶书'
else:
fenlei = ''
return render_template('upload.html', result=fenlei, imgpath=upload_path)
return render_template('upload.html')
def kairec(upload_path):
data = Image.open(upload_path)
'''跟文件名没有关系'''
pred = predict(5,'kaimodels/vgg.ckpt',data)
pred = np.squeeze(pred)
pred = pred.tolist()
fenlei = ''
index = pred.index(max(pred))
'''获取最大值进行判断'''
if index == 0:
fenlei="楷体("+"欧体"+")"
elif index == 1:
fenlei = "楷体(" + "赵体" + ")"
elif index == 2:
fenlei = "楷体(" + "柳体" + ")"
elif index == 3:
fenlei = "楷体(" + "魏碑" + ")"
elif index == 4:
fenlei = "楷体(" + "颜体" + ")"
return fenlei
if __name__ == '__main__':
app.run(debug=True)