-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment.py
76 lines (59 loc) · 2.31 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import obj_actions
from abc import ABC
import numpy as np
import os
import object_3d
from stl import mesh
from tf_agents.environments import py_environment
from tf_agents.specs import array_spec
from tf_agents.trajectories import time_step as ts
objects_path = 'tests/stl_binary/'
cube_limit = 380 * 280 * 380
class VolumeFitterEnv(py_environment.PyEnvironment, ABC):
def __init__(self):
self.to_arrange = []
for object_path in os.listdir(objects_path):
self.to_arrange.append(object_3d.Object(mesh.Mesh.from_file(objects_path + str(object_path))))
self.arranged = self.to_arrange.pop()
self._action_spec = array_spec.BoundedArraySpec(
shape=(), dtype=np.int32, minimum=0, maximum=3, name='action')
self._observation_spec = array_spec.BoundedArraySpec(
shape=(1,), dtype=np.int32, minimum=0, name='observation')
self._state = 0
self._episode_ended = False
def action_spec(self):
return self._action_spec
def observation_spec(self):
return self._observation_spec
def _reset(self):
self._state = 0
self._episode_ended = False
return ts.restart(np.array([self._state], dtype=np.int32))
def _step(self, action):
if self._episode_ended:
# The last action ended the episode. Ignore the current action and start
# a new episode.
return self.reset()
# Stop arranging
if action == 0:
self._episode_ended = True
# Arrange one object
elif action == 1:
body = obj_actions.bodies.pop()
# for _ in range(6):
# obj_actions.arrange_cubes(done, body)
# get_outter_box
#self._state += new_card
# Save changes
#elif action == 2:
else:
raise ValueError('`action` should be 0, 1 or 2.')
if self._episode_ended or self._state >= 21:
reward = self._state - 21 if self._state <= 21 else -21
return ts.termination(np.array([self._state], dtype=np.int32), reward)
else:
return ts.transition(
np.array([self._state], dtype=np.int32), reward=0.0, discount=1.0)