forked from rasbt/python-machine-learning-book-3rd-edition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch17_part1.py
480 lines (302 loc) · 12.2 KB
/
ch17_part1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# coding: utf-8
import tensorflow as tf
#from google.colab import drive
import tensorflow_datasets as tfds
import numpy as np
import matplotlib.pyplot as plt
import time
import itertools
# *Python Machine Learning 3rd Edition* by [Sebastian Raschka](https://sebastianraschka.com) & [Vahid Mirjalili](http://vahidmirjalili.com), Packt Publishing Ltd. 2019
#
# Code Repository: https://github.com/rasbt/python-machine-learning-book-3rd-edition
#
# Code License: [MIT License](https://github.com/rasbt/python-machine-learning-book-3rd-edition/blob/master/LICENSE.txt)
# # Chapter 17 - Generative Adversarial Networks for Synthesizing New Data (Part 1/2)
# Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s).
# # Introducing generative adversarial networks
#
# ## Starting with autoencoders
# ## Generative models for synthesizing new data
# ## Generating new samples with GANs
# ## Understanding the loss functions for the generator and discriminator networks in a GAN model
# # Implementing a GAN from scratch
#
# ## Training GAN models on Google Colab
# Uncomment the following line if running this notebook on Google Colab
#! pip install -q tensorflow-gpu==2.0.0
print(tf.__version__)
print("GPU Available:", tf.test.is_gpu_available())
if tf.test.is_gpu_available():
device_name = tf.test.gpu_device_name()
else:
device_name = 'cpu:0'
print(device_name)
#drive.mount('/content/drive/')
# ## Implementing the generator and the discriminator networks
## define a function for the generator:
def make_generator_network(
num_hidden_layers=1,
num_hidden_units=100,
num_output_units=784):
model = tf.keras.Sequential()
for i in range(num_hidden_layers):
model.add(
tf.keras.layers.Dense(
units=num_hidden_units,
use_bias=False)
)
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Dense(
units=num_output_units, activation='tanh'))
return model
## define a function for the discriminator:
def make_discriminator_network(
num_hidden_layers=1,
num_hidden_units=100,
num_output_units=1):
model = tf.keras.Sequential()
for i in range(num_hidden_layers):
model.add(tf.keras.layers.Dense(units=num_hidden_units))
model.add(tf.keras.layers.LeakyReLU())
model.add(tf.keras.layers.Dropout(rate=0.5))
model.add(
tf.keras.layers.Dense(
units=num_output_units,
activation=None)
)
return model
image_size = (28, 28)
z_size = 20
mode_z = 'uniform' # 'uniform' vs. 'normal'
gen_hidden_layers = 1
gen_hidden_size = 100
disc_hidden_layers = 1
disc_hidden_size = 100
tf.random.set_seed(1)
gen_model = make_generator_network(
num_hidden_layers=gen_hidden_layers,
num_hidden_units=gen_hidden_size,
num_output_units=np.prod(image_size))
gen_model.build(input_shape=(None, z_size))
gen_model.summary()
disc_model = make_discriminator_network(
num_hidden_layers=disc_hidden_layers,
num_hidden_units=disc_hidden_size)
disc_model.build(input_shape=(None, np.prod(image_size)))
disc_model.summary()
# ## Defining the training dataset
mnist_bldr = tfds.builder('mnist')
mnist_bldr.download_and_prepare()
mnist = mnist_bldr.as_dataset(shuffle_files=False)
def preprocess(ex, mode='uniform'):
image = ex['image']
image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.reshape(image, [-1])
image = image*2 - 1.0
if mode == 'uniform':
input_z = tf.random.uniform(
shape=(z_size,), minval=-1.0, maxval=1.0)
elif mode == 'normal':
input_z = tf.random.normal(shape=(z_size,))
return input_z, image
mnist_trainset = mnist['train']
print('Before preprocessing: ')
example = next(iter(mnist_trainset))['image']
print('dtype: ', example.dtype, ' Min: {} Max: {}'.format(np.min(example), np.max(example)))
mnist_trainset = mnist_trainset.map(preprocess)
print('After preprocessing: ')
example = next(iter(mnist_trainset))[0]
print('dtype: ', example.dtype, ' Min: {} Max: {}'.format(np.min(example), np.max(example)))
# * **Step-by-step walk through the data-flow**
mnist_trainset = mnist_trainset.batch(32, drop_remainder=True)
input_z, input_real = next(iter(mnist_trainset))
print('input-z -- shape:', input_z.shape)
print('input-real -- shape:', input_real.shape)
g_output = gen_model(input_z)
print('Output of G -- shape:', g_output.shape)
d_logits_real = disc_model(input_real)
d_logits_fake = disc_model(g_output)
print('Disc. (real) -- shape:', d_logits_real.shape)
print('Disc. (fake) -- shape:', d_logits_fake.shape)
# ## Training the GAN model
loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True)
## Loss for the Generator
g_labels_real = tf.ones_like(d_logits_fake)
g_loss = loss_fn(y_true=g_labels_real, y_pred=d_logits_fake)
print('Generator Loss: {:.4f}'.format(g_loss))
## Loss for the Discriminator
d_labels_real = tf.ones_like(d_logits_real)
d_labels_fake = tf.zeros_like(d_logits_fake)
d_loss_real = loss_fn(y_true=d_labels_real, y_pred=d_logits_real)
d_loss_fake = loss_fn(y_true=d_labels_fake, y_pred=d_logits_fake)
print('Discriminator Losses: Real {:.4f} Fake {:.4f}'
.format(d_loss_real.numpy(), d_loss_fake.numpy()))
# * **Final training**
num_epochs = 100
batch_size = 64
image_size = (28, 28)
z_size = 20
mode_z = 'uniform'
gen_hidden_layers = 1
gen_hidden_size = 100
disc_hidden_layers = 1
disc_hidden_size = 100
tf.random.set_seed(1)
np.random.seed(1)
if mode_z == 'uniform':
fixed_z = tf.random.uniform(
shape=(batch_size, z_size),
minval=-1, maxval=1)
elif mode_z == 'normal':
fixed_z = tf.random.normal(
shape=(batch_size, z_size))
def create_samples(g_model, input_z):
g_output = g_model(input_z, training=False)
images = tf.reshape(g_output, (batch_size, *image_size))
return (images+1)/2.0
## Set-up the dataset
mnist_trainset = mnist['train']
mnist_trainset = mnist_trainset.map(
lambda ex: preprocess(ex, mode=mode_z))
mnist_trainset = mnist_trainset.shuffle(10000)
mnist_trainset = mnist_trainset.batch(
batch_size, drop_remainder=True)
## Set-up the model
with tf.device(device_name):
gen_model = make_generator_network(
num_hidden_layers=gen_hidden_layers,
num_hidden_units=gen_hidden_size,
num_output_units=np.prod(image_size))
gen_model.build(input_shape=(None, z_size))
disc_model = make_discriminator_network(
num_hidden_layers=disc_hidden_layers,
num_hidden_units=disc_hidden_size)
disc_model.build(input_shape=(None, np.prod(image_size)))
## Loss function and optimizers:
loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True)
g_optimizer = tf.keras.optimizers.Adam()
d_optimizer = tf.keras.optimizers.Adam()
all_losses = []
all_d_vals = []
epoch_samples = []
start_time = time.time()
for epoch in range(1, num_epochs+1):
epoch_losses, epoch_d_vals = [], []
for i,(input_z,input_real) in enumerate(mnist_trainset):
## Compute generator's loss
with tf.GradientTape() as g_tape:
g_output = gen_model(input_z)
d_logits_fake = disc_model(g_output, training=True)
labels_real = tf.ones_like(d_logits_fake)
g_loss = loss_fn(y_true=labels_real, y_pred=d_logits_fake)
g_grads = g_tape.gradient(g_loss, gen_model.trainable_variables)
g_optimizer.apply_gradients(
grads_and_vars=zip(g_grads, gen_model.trainable_variables))
## Compute discriminator's loss
with tf.GradientTape() as d_tape:
d_logits_real = disc_model(input_real, training=True)
d_labels_real = tf.ones_like(d_logits_real)
d_loss_real = loss_fn(
y_true=d_labels_real, y_pred=d_logits_real)
d_logits_fake = disc_model(g_output, training=True)
d_labels_fake = tf.zeros_like(d_logits_fake)
d_loss_fake = loss_fn(
y_true=d_labels_fake, y_pred=d_logits_fake)
d_loss = d_loss_real + d_loss_fake
## Compute the gradients of d_loss
d_grads = d_tape.gradient(d_loss, disc_model.trainable_variables)
## Optimization: Apply the gradients
d_optimizer.apply_gradients(
grads_and_vars=zip(d_grads, disc_model.trainable_variables))
epoch_losses.append(
(g_loss.numpy(), d_loss.numpy(),
d_loss_real.numpy(), d_loss_fake.numpy()))
d_probs_real = tf.reduce_mean(tf.sigmoid(d_logits_real))
d_probs_fake = tf.reduce_mean(tf.sigmoid(d_logits_fake))
epoch_d_vals.append((d_probs_real.numpy(), d_probs_fake.numpy()))
all_losses.append(epoch_losses)
all_d_vals.append(epoch_d_vals)
print(
'Epoch {:03d} | ET {:.2f} min | Avg Losses >>'
' G/D {:.4f}/{:.4f} [D-Real: {:.4f} D-Fake: {:.4f}]'
.format(
epoch, (time.time() - start_time)/60,
*list(np.mean(all_losses[-1], axis=0))))
epoch_samples.append(
create_samples(gen_model, fixed_z).numpy())
#import pickle
# pickle.dump({'all_losses':all_losses,
# 'all_d_vals':all_d_vals,
# 'samples':epoch_samples},
# open('/content/drive/My Drive/Colab Notebooks/PyML-3rd-edition/ch17-vanila-learning.pkl', 'wb'))
#gen_model.save('/content/drive/My Drive/Colab Notebooks/PyML-3rd-edition/ch17-vanila-gan_gen.h5')
#disc_model.save('/content/drive/My Drive/Colab Notebooks/PyML-3rd-edition/ch17-vanila-gan_disc.h5')
fig = plt.figure(figsize=(16, 6))
## Plotting the losses
ax = fig.add_subplot(1, 2, 1)
g_losses = [item[0] for item in itertools.chain(*all_losses)]
d_losses = [item[1]/2.0 for item in itertools.chain(*all_losses)]
plt.plot(g_losses, label='Generator loss', alpha=0.95)
plt.plot(d_losses, label='Discriminator loss', alpha=0.95)
plt.legend(fontsize=20)
ax.set_xlabel('Iteration', size=15)
ax.set_ylabel('Loss', size=15)
epochs = np.arange(1, 101)
epoch2iter = lambda e: e*len(all_losses[-1])
epoch_ticks = [1, 20, 40, 60, 80, 100]
newpos = [epoch2iter(e) for e in epoch_ticks]
ax2 = ax.twiny()
ax2.set_xticks(newpos)
ax2.set_xticklabels(epoch_ticks)
ax2.xaxis.set_ticks_position('bottom')
ax2.xaxis.set_label_position('bottom')
ax2.spines['bottom'].set_position(('outward', 60))
ax2.set_xlabel('Epoch', size=15)
ax2.set_xlim(ax.get_xlim())
ax.tick_params(axis='both', which='major', labelsize=15)
ax2.tick_params(axis='both', which='major', labelsize=15)
## Plotting the outputs of the discriminator
ax = fig.add_subplot(1, 2, 2)
d_vals_real = [item[0] for item in itertools.chain(*all_d_vals)]
d_vals_fake = [item[1] for item in itertools.chain(*all_d_vals)]
plt.plot(d_vals_real, alpha=0.75, label=r'Real: $D(\mathbf{x})$')
plt.plot(d_vals_fake, alpha=0.75, label=r'Fake: $D(G(\mathbf{z}))$')
plt.legend(fontsize=20)
ax.set_xlabel('Iteration', size=15)
ax.set_ylabel('Discriminator output', size=15)
ax2 = ax.twiny()
ax2.set_xticks(newpos)
ax2.set_xticklabels(epoch_ticks)
ax2.xaxis.set_ticks_position('bottom')
ax2.xaxis.set_label_position('bottom')
ax2.spines['bottom'].set_position(('outward', 60))
ax2.set_xlabel('Epoch', size=15)
ax2.set_xlim(ax.get_xlim())
ax.tick_params(axis='both', which='major', labelsize=15)
ax2.tick_params(axis='both', which='major', labelsize=15)
#plt.savefig('images/ch17-gan-learning-curve.pdf')
plt.show()
selected_epochs = [1, 2, 4, 10, 50, 100]
fig = plt.figure(figsize=(10, 14))
for i,e in enumerate(selected_epochs):
for j in range(5):
ax = fig.add_subplot(6, 5, i*5+j+1)
ax.set_xticks([])
ax.set_yticks([])
if j == 0:
ax.text(
-0.06, 0.5, 'Epoch {}'.format(e),
rotation=90, size=18, color='red',
horizontalalignment='right',
verticalalignment='center',
transform=ax.transAxes)
image = epoch_samples[e-1][j]
ax.imshow(image, cmap='gray_r')
#plt.savefig('images/ch17-vanila-gan-samples.pdf')
plt.show()
#
# ----
#
#
# Readers may ignore the next cell.
#