-
Notifications
You must be signed in to change notification settings - Fork 4
/
ChaosEmptyAdS2.nb
1369 lines (1349 loc) · 67 KB
/
ChaosEmptyAdS2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 68375, 1359]
NotebookOptionsPosition[ 67290, 1332]
NotebookOutlinePosition[ 67652, 1348]
CellTagsIndexPosition[ 67609, 1345]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Reissner", "-",
RowBox[{"Nordstrom", " ", "AdS", " ", "with", " ", "M"}]}], " ", "=", " ",
RowBox[{
RowBox[{"0", " ", "Q"}], " ", "=", " ", "0"}]}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.767838492980019*^9,
3.767838520405554*^9}},ExpressionUUID->"83d80b03-0991-407b-8c2f-\
1a8680c9f15e"],
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<VariationalMethods`\>\"", "]"}]], "Input",
CellChangeTimes->{{3.7678385211698723`*^9,
3.767838530596305*^9}},ExpressionUUID->"d61e952a-0248-4d30-ba64-\
fd995974268c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"EulerEquations", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2",
RowBox[{"M", "/",
RowBox[{"r", "[", "t", "]"}]}]}], "+",
RowBox[{
RowBox[{"Q", "^", "2"}], "/",
RowBox[{
RowBox[{"r", "[", "t", "]"}], "^", "2"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"r", "[", "t", "]"}], "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}], ")"}], "-",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"r", "[", "t", "]"}], ",", "t"}], "]"}], "^", "2"}], "/",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2",
RowBox[{"M", "/",
RowBox[{"r", "[", "t", "]"}]}]}], "+",
RowBox[{
RowBox[{"Q", "^", "2"}], "/",
RowBox[{
RowBox[{"r", "[", "t", "]"}], "^", "2"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"r", "[", "t", "]"}], "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}], ")"}]}]}], ",",
RowBox[{"r", "[", "t", "]"}], ",", "t"}], "]"}]], "Input",
CellChangeTimes->{{3.767838531779842*^9,
3.767838613692481*^9}},ExpressionUUID->"6b0cb62d-d09d-445a-b73c-\
c77951194c3d"],
Cell[BoxData[
RowBox[{
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SuperscriptBox["Q", "2"],
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"]]}], "+",
FractionBox["M",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]], "-",
FractionBox[
RowBox[{"M", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "M"}], "+",
FractionBox[
SuperscriptBox["Q", "2"],
RowBox[{"r", "[", "t", "]"}]], "+",
RowBox[{"r", "[", "t", "]"}], "+",
FractionBox[
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"],
SuperscriptBox["l", "2"]]}], ")"}], "2"]], "+",
FractionBox[
RowBox[{
RowBox[{"r", "[", "t", "]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "6"], " ",
SuperscriptBox["Q", "2"]}], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"]}]}], ")"}], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox["Q", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ", "M", " ",
RowBox[{"r", "[", "t", "]"}]}], "+",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"]}], ")"}], "2"]]}], ")"}]}],
SuperscriptBox["l", "2"]], "+",
FractionBox[
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
RowBox[{"1", "+",
FractionBox[
SuperscriptBox["Q", "2"],
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]], "-",
FractionBox[
RowBox[{"2", " ", "M"}],
RowBox[{"r", "[", "t", "]"}]], "+",
FractionBox[
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"],
SuperscriptBox["l", "2"]]}]]}], ")"}]}], "\[Equal]", "0"}]], "Output",\
CellChangeTimes->{
3.7678386145625772`*^9},ExpressionUUID->"6d9fc658-1f00-40b0-afd0-\
1965b5b54ee1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
"lapsef", ",", "r1", ",", "r2", ",", "pr", ",", "rdot", ",", "t1"}],
"}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"lapsef", "[",
RowBox[{"M_", ",", "Q_", ",", "l_", ",", "r_"}], "]"}], ":=",
RowBox[{"1", "-",
RowBox[{"2",
RowBox[{"M", "/", "r"}]}], "+",
RowBox[{
RowBox[{"Q", "^", "2"}], "/",
RowBox[{"r", "^", "2"}]}], "+",
RowBox[{
RowBox[{"r", "^", "2"}], "/",
RowBox[{"l", "^", "2"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"r1", "[",
RowBox[{"M1_", ",", "Q1_", ",", "l1_", ",", "rs_"}], "]"}], ":=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
SuperscriptBox["Q", "2"],
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"]]}], "+",
FractionBox["M",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]], "-",
FractionBox[
RowBox[{"M", " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ", "M"}], "+",
FractionBox[
SuperscriptBox["Q", "2"],
RowBox[{"r", "[", "t", "]"}]], "+",
RowBox[{"r", "[", "t", "]"}], "+",
FractionBox[
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "3"],
SuperscriptBox["l", "2"]]}], ")"}], "2"]], "+",
FractionBox[
RowBox[{
RowBox[{"r", "[", "t", "]"}], " ",
RowBox[{"(",
RowBox[{"1", "+",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "6"], " ",
SuperscriptBox["Q", "2"]}], "-",
RowBox[{
SuperscriptBox["l", "4"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"]}]}], ")"}], " ",
SuperscriptBox[
RowBox[{
SuperscriptBox["r", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox["Q", "2"]}], "-",
RowBox[{"2", " ",
SuperscriptBox["l", "2"], " ", "M", " ",
RowBox[{"r", "[", "t", "]"}]}], "+",
RowBox[{
SuperscriptBox["l", "2"], " ",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]}], "+",
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "4"]}], ")"}], "2"]]}],
")"}]}],
SuperscriptBox["l", "2"]], "+",
FractionBox[
RowBox[{
SuperscriptBox["r", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}],
RowBox[{"1", "+",
FractionBox[
SuperscriptBox["Q", "2"],
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"]], "-",
FractionBox[
RowBox[{"2", " ", "M"}],
RowBox[{"r", "[", "t", "]"}]], "+",
FractionBox[
SuperscriptBox[
RowBox[{"r", "[", "t", "]"}], "2"],
SuperscriptBox["l", "2"]]}]]}], ")"}]}], "\[Equal]", "0"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"M", "\[Rule]", "M1"}], ",",
RowBox[{"Q", "\[Rule]", "Q1"}], ",",
RowBox[{"l", "\[Rule]", "l1"}]}], "}"}]}], ",",
RowBox[{
RowBox[{
RowBox[{"r", "'"}], "[", "0", "]"}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{"r", "[", "0", "]"}], "\[Equal]", "rs"}]}], " ", "}"}], ",",
RowBox[{"r", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "10"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"r2", "[",
RowBox[{"t1_", ",", "M_", ",", "Q_", ",", "l_", ",", "rs_"}], "]"}], ":=",
RowBox[{
RowBox[{"r1", "[",
RowBox[{"M", ",", "Q", ",", "l", ",", "rs"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"rdot", "[",
RowBox[{"t_", ",", "M_", ",", "Q_", ",", "l_", ",", "rs_"}], "]"}], ":=",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"r2", "[",
RowBox[{"t1", ",", "M", ",", "Q", ",", "l", ",", "rs"}], "]"}], ",",
"t1"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t1", "\[Rule]", "t"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"pr", "[",
RowBox[{"t_", ",", "M_", ",", "Q_", ",", "l_", ",", "rs_"}], "]"}], ":=",
RowBox[{
RowBox[{"rdot", "[",
RowBox[{"t", ",", "M", ",", "Q", ",", "l", ",", "rs"}], "]"}], "/",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"lapsef", "[",
RowBox[{"M", ",", "Q", ",", "l", ",",
RowBox[{"r2", "[",
RowBox[{"t", ",", "M", ",", "Q", ",", "l", ",", "rs"}], "]"}]}],
"]"}], "^", "3"}], "-",
RowBox[{
RowBox[{
RowBox[{"rdot", "[",
RowBox[{"t", ",", "M", ",", "Q", ",", "l", ",", "rs"}], "]"}], "^",
"2"}],
RowBox[{"lapsef", "[",
RowBox[{"M", ",", "Q", ",", "l", ",",
RowBox[{"r2", "[",
RowBox[{"t", ",", "M", ",", "Q", ",", "l", ",", "rs"}], "]"}]}],
"]"}]}]}], "]"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Re", "[",
RowBox[{"r2", "[",
RowBox[{"i", ",", "0", ",", "0", ",", "1", ",", "100"}], "]"}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "10", ",", "0.01"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "r"}], "}"}]}]}], "]"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"Im", "[",
RowBox[{"pr", "[",
RowBox[{"i", ",", "0", ",", "0", ",", "1", ",", "100"}], "]"}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "10", ",", "0.01"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "pr"}], "}"}]}]}], "]"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"r2", "[",
RowBox[{"i", ",", "0", ",", "0", ",", "1", ",", "100"}], "]"}],
"]"}], ",",
RowBox[{"Im", "[",
RowBox[{"pr", "[",
RowBox[{"i", ",", "0", ",", "0", ",", "1", ",", "100"}], "]"}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0.01", ",", "10", ",", "0.01"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"r", ",", "pr"}], "}"}]}]}], "]"}], "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.7678386165494213`*^9, 3.767838802812498*^9}, {
3.767838941918989*^9, 3.767838947054159*^9}, {3.7678390031020927`*^9,
3.767839010129274*^9}, {3.767839282171254*^9, 3.7678393164026737`*^9}, {
3.767839531992179*^9, 3.767839718273011*^9}, {3.767840626154273*^9,
3.767840678135838*^9}, {3.7678407270882998`*^9, 3.767840836602663*^9}, {
3.767840899933316*^9, 3.767840996738379*^9}, {3.767841050345201*^9,
3.767841128925655*^9}, {3.7678411846335173`*^9, 3.767841224835733*^9}, {
3.767841353616246*^9, 3.767841393133177*^9}, {3.767841844320507*^9,
3.767841850800058*^9}},ExpressionUUID->"5bbce6b6-4046-404e-8b36-\
3e9e72ce0b64"],
Cell[CellGroupData[{
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.006944444444444445],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw12nc8lV8cB3B7by73ulx3ULKyKeN8ESqUTaWtifZU2rQHqSQqpaWdBpXu
LaVUqJQoK8ome4+fX8/X/ef38qPnPs95n895zvmew1m02neJiJCQUJ2okND/
/92mdsf9V+Q+UtD4zc3Pwhuon+PJkuE9D3tjJ0MGK7rRJ+M8+Tr7zIz1n3j4
+1TiKrxjgglfDhLP/v+5QZz0zA+2nW4nmf/+/g5R2jozb/vz3fzRH0b/z33i
19Z6YLlYB5/69w9JBNfxxJ4p8gKZ75fXOMg8ISEDE+4qT9AV/Lvc2UySrpzH
2iNmJ5gQcvxVl/5zoj5Vvpy70ltA3c8LMvSgUlNmJFiQOvqvv18WkI1el6Qi
+mYKmv5930siNrODY8qZLLC0+P+TTYYivq/028oTUN//mqy/xHmqYC8nyO7S
H/2GNyQ6jKFfb9DOl/13P2/J8qmt6wzPJRLff1/4jiS/tYj2W99BqOfNJQ9i
E/1VPspDVeT/F3xPJOZXHjbfqwvU/X4kR25veZm/xQ7W/n97a/KI413vx9op
3kC1Tz6REp+gNmEwGIT+fT6Rj61tLtePzATqeT6R6Ky6EL0Hk2Dqr/+/4DNp
YUU+u8XjAfV8n0n/Em1X5jNZOPHq/wf4QpbNSnnoLmgj/x7XopC48U401xtd
5f97nO+FJP2SfO7T6rH2/0rqn8WU1AYoCHT+vx3WN3J99o3zpeW62B7fyOqg
60PVLXaCZUv//xQRpx9nfB2KvQVU+3wns50ivOb1BAv+v5rane+krPOCz2L2
TAHVXsXkTLPY7i9TJgm6/79cVzEZuSd5eEsBV0C1Xwlx1KgNmGYvK3D81wF+
kNodD7aLBbXxqfb8QerTeyy+yt8l/24v+ifRuxu99FpAJ6Hat5TER4YZKFQp
QN7H/z+lZOopkR/q9nrY3mUkLNBV/+1Se6D9u8FyMq+p8XGkog+2fznZ3pF2
4GZrMPy7XEgFadnhL3Lj4Qz0qCTTLU8qmZfYAvU8lcSpW3vXve1c9KkkD9vc
hI/zZYB6vkoSdjhotsbfVkJ5/SLeVud9d/Wm86nn/UXMonzyOLmdfMrvF6la
SVtxfI0iPn8VaajPj6xN1BNQnlXE+JRe+PZKewF1uSrCtLLXzXfzEVC+1eTO
2y+7VeuCBVT7VJOQS0lP9k2bIaB4qokjr346WW2L+flNprY8KphhyMX+/5uk
7t4uXj1FRkC1329S2fkncsuBVj7VH/6QzZXbE4+GZRCqPf+QE64bH5k7dhGq
f/wh4bvMxj0TUsL2rSGxGa8dAwb0gOovNSTuZ/wRqRAHbO8acviyaPPEHT5A
5b2WXHAIO3y2bKz9a4n4Cj0QqvACqj/Vkijx7nedErboUUemFq6c5fWTgx51
pGD9mQy7j9LoUUfgAjNLh9dKKI86Umw/PjWs8jmf8qgngXXtM6ofdqFHPRFp
WK66bLoSjhf1JGWrm+uyuePQo4FU7BW+s6bEAT0ayO5QBaeERz4Cqn82kMkz
nDOdPgejRyMx+pT2QHejF3o0ksaUQ688L9qgRyOxKP306coRDno0kewOYns8
QBo9mkhhWV2C9I6/fMqjiURnm/18dlNAKI9mopkx08nBuBs9msn4l5vDfU4p
AeXRTA7si2rXfTkOPVpIzOGvZzKDHdGjhaQnLX4x3DTW/1vI9obvJ5Wyg9Hj
L+Ev/jDQL+uFHn+JSvBpeWc7G/T4S65wvu32JRz0aCWvdYXPfq2UwvGuldia
2cyA0etSPq0k8uS86XvrXuF400oWLgmYN+1aN5/yaiUmZ5MSdv5Swv7XSrw3
1bTFjxuP40UrKS2T2l5b4ojjUxupXbU0bbaur4DybCNLRgdg2fRgAdUebeRB
8u37hy974vjSRi4Fz55f8N0ax7M2ohV69KlXBxu924j4pC2dIqukBFR7tZPU
fr9jXzub+ZR/OzFq2Oj4ZNwbQrVfO9m79eR9JV4PofpDO7kofkG7x0QZ34/t
xOdYreiLo+OByms76XA/IjMcQrB9O0hx4mDWpTm+QPWXDqJx93q9bcpY/+8g
B59HOFXYeQLVfzrIxYwz3X83WmP7d5BFOpUGcdfZQPWnDnKuKSpPeUgSPTqJ
DKM+4YlFM46PnWSaxp8Ne5e+5VMenaRUajgv6WIPenSSkbhTci+ilPH92Ulm
Zn76fq17PHp0kqnkwESRKoIeo+PuHC+p/Dhf9Ogig75PjS8cDUaPLnL2xbVN
g1890KOLlJEZP5Jp1ujRRRY/XHqHMZ+NHl1EmR5ysOeoJHp0kdmNLQolG5r4
lEc3eTsrdg79ei6hPLpJbcRptV6dXvToJlerf/J/5Cnj+6+b7HtrbjV7oT56
dBNueLTLdktAj26iXxRvXJjrix49pLDVZpvrlmD06CEF8Yt/1q/yQI8eMsza
sbHwsRV69BCzF5fvlKuz0aOHsDfd2HWTLYkePWSff5GyQUYjoTx6ibSx78lL
jR/4lEcvidz1eq5RSi96jD6HYeMCPx0VzH8vmX3h583SPH306CUrcuVXt28B
9Ogli2PSpK8L+aFHL7lqKHbSYmEwevSRAMcC4zvSHujRR+y+3ek6PMsKPfqI
Y+1Oi4wLOujRR2hua17oPZJAjz6SJ5z6J2moAd9PfWTBc1VxT7N8Qnn0E+dr
K/846/ahRz959+xiqvE6FRxf+skJ4TBTa/sJ6NFPVjHe2S15ATje9JPm5Jcr
nW380KOfBAaOp6+bOjb+DBCLVdvPz7wyHT0GyMdDD9RfDVmixwDxWm5vxlDT
QY8BcuRKZ+lcDwn0GCDLdzwo4bo2EMpjgPgek3ZPsf/EpzwGiUnFJHG3G33o
MUguxC2SXZOjgvOVQfLty4+nq25NQI9BktuvE1sk5oQeg6S0OOHtmQg/9Bgk
Nve9iqRNgtFjkJy/8jO70Gk6egyRFnvxV2suW6LHEBG8lecWHWKhxxAJdnr5
x6NaHD2GSHKGi8KdY/V8ymOIPDup9Kt44WdCeQyRoSRWPDHtR49h4tXv+4St
pQqUxzDRn/Pi0VGWAXoMk+Tt3XXunk7oMUw2HVtlmnzZDz2GCZ3x0VNMJRg9
hkl8XqMWVExDjxGyzyTM7eR0S/QYIeTF0md/RFnoMUKsRQ7eqtsujh4jRI/c
lzf/UUcojxHS++bZkgUHvuD8c4SExj5fZJvZjx5C4GqRQHNdryr419xqQpCh
W7brbJwBvh+F4MIuVltmvJPgX3M5CMExpRQh9xI/9BICv8TszLDOIMG/x10q
BGGrz0UmRk0T/HucSCFQNKUx9TosBP9u97gQlHSVrnXcqS34dzuXhWCjv0iU
EV0c1xNCYD3pvlzK+Dr+P96PQlBunRI3414hodpHCERSc9h2UwYINXwJQUot
d7D6gyq2lzAUiVxKSJQyhH+XYwlD+/7cBJNyJ2w/Ycimp0QcUvCHf83jLgy9
Ch9XT/8WhO0pDApqW9bXaE2Df7e3Rhg+DOxJZCdbYPsKQ3Jow/Nvg1pArY+E
wU5D3FTxkRj2f2GY/ev67qZNteTf474Shlir/TOelXzF9hcGqYh7fb6fB3A9
Jgzc3CcbxMapCSgOEShoIrvP7jJEDxHgrlux85q+M3qIQC2nUy3ExR89RGAe
I2so7WEQeohAqtzVW+OzpqKHCPjdfLd611QLzJMIPPdJjEvZroUeInC9ki98
0E8MPUTg0p4DryXe1fApDxFwOGXDyhIrIpSHCJSb5S8+tGAQPURgVcrnoVu7
1YDyEAHFtDO/kvsN0UMUkgb/xultcEYPUXAFfZl7m/3RQxSkKtZeSYgLQg9R
oC+VUF80byp6iMK6LY25pMscPUSh4HRxQsIwEz1Ewe6Nx+G4DlH0EIXax0tD
qzRrsP+LAmeljGqY2Xc+5SEKOaqJkU1tg+ghCtm/c2/9LlcTUB6isCfHYu69
TUboIQYRvPjpaQJn9BCDyVsb70Te9EcPMdD4svwha3UQeohB8TAtMEFoKnqI
gaS3FGfWZXP0EAPaxoHT9/Yw0UMMmqOvF/BOiaKHGBy5FdK0ZvUfPuUhBrbi
Gubl84sJ5SEGOoFs/+joIfQQg31tCy3SHWg4fohBbOgy9o9OI/QQA7nA5T3W
Ci7oIQ4pMq/77pb7o4c4nNJ7+mjq9CD0EIcPd4PoeZfd0UMcig1bF771NUeP
0b/f+j6wUoqJHuJws/x3jpWtKHqIw+bEN1VX3vwmlIc4ZAlZfTc8UcKnPMRh
UH6u8HzmMHqIw3nXhMes8zScn4uD0CwhG+5GY/QQh3HFuSkfQlzQQwI+9OzS
dlEOQA8JOL3giihPNwg9JODYrmkPRae6o4cEDL7+6h0jao4eEuCrNeO+Tqwm
ekiAXNbanpelIughATvlLjlt1P7Npzwk4IBzzo0Vr34QykMC8jxCHPalD6OH
BPw61KxpIqQOlIcEmM68+OJEjzF6SMApmmvm8lsu6DH696HzTox3CUAPSSi0
KR/IHAxED0lQPtt01bHZDT0kwSNmIy32kRl6SMKm9gs3lzA10UMSfCbunfJy
jwh6SMIZ2fKaz5uqcb0uCTknD8bc7f7JpzwkYXKUbY/QjBH0kIQjT+1k6her
CygPSWDtCB002W6CHpJg5zVniuKQC3pIwq/zodY+GwLQQwpkWIW1jK+B6CEF
h6w8pXeedEMPKbjnPF+zarkZekiBz86bLtevMdBDChTIlAZDAxH0kILnN7PC
b3+uwvmxFJxTkq7QMC4jlIcUWB177lTVMEKo+YAUPCh7lxOUq47zTSnIk12/
W0J0InpIQcfduy38GVPQQwrsh875p6cGoIcURAaOY8xMC0QPaVDTnrIoZ7Ib
ekjD0ooDFzZom6GHNFRXJ+hWWDHQQxr+3NPfOPBFGD2k4cnu0MEB4ypCeUhD
y5pz+zKWlPMpD2mYvCh7D8NVCOtr0gCLVxrvNtXA+o00lF5tdtI5MhE9pMHm
msH6yJQp6CENSx69ozt9DUCP0e+n9ccs3RmIHjLA1Xzhpl7tih4ycLPM9o9L
oSl6yMCzZToJwjl09JABvbhKmQlRwughA50gmnLv8C8+5SEDm+TDjdMuVhDK
QwZ6jF2rR04JAeUhAzorTtpEnNXA9b8M9J/ZYPlS1hQ9ZCDO8tZ3x64p6CED
g8uFY5tFAtFDBtbQjstH+AWihwzkBTC/rj7iih6yEPN7wySPQ6boIQuHJVTc
JYPp6CELj1iu8nf0hdFDFr6b3rnwoqGSUB6yEHA4pkVkdSWf8pCFnl/r3hvU
CWF9QBbkdBJCdcXo6CELWgnWQsm+pughC2VbDCLlp7uihyxMLhU43jINRA9Z
aL76SG71uED0kIXiR1cMC61d0UMONhqG7op2NkUPOThhqniotlEDPeQg9eiE
wb3fhNBDDs6Mi2VoelTi+kQOdM18K1sVfhHKQw6YE9ecvmAnjPVfOZh9eavS
7TV09JCDWccGPK4mmqKHHIgHsCf/vuCKHnJgd9LdfvXcQPSQA1oOfVtkbwB6
yIF97KcnzlVT0GP0ep1mN8p7JqKHPCz82SQ4t1sDPeShpzog6MpeIfSQh6LN
WTPWzKoglIc8aA9omhrc+8WnPORBvnnBhtATwgLKQx5sDkWfUKygo4c83P5t
oVVVbYoe8uCzw8wgu9sVPeRhwmz7RQYHA9FDHrirtD6dyw1AD3mI0jz1LOvY
FPSQh0KF3dkSERPRQwGKxpcqMhka6KEA9Mcyi2UthNBDAfYtqS3Q0CnnUx4K
UNxK4p/5VmE9RQHi1pi/2VkjDJSHAogxHW/5zWSghwIc2iYX529ihh4KsH/P
9q3XZ7ihhwK4SM6y/JQeiB4KYJ4hFFN5NgA9FMAt70OEq/3YeKUAL+jPD2z7
bYIeCpD955bXvAfq6KEIMdLLzi54O0IoD0WQ3PS2WrW2FOvPijCPXTN0r7uK
T3koQutCpnKvg4iA8lCECuETqnteMtBDEZI0P3wUiTRDD0UwKet/efKaG3oo
wkvDTWn+ZYHooQjs9ivd/isC0EMRpBM77xY3uKCHIqwqDjxpPs8EPRShyvBR
Y4iXOnooQWXvAjbTcIRPPY8SLHiXZuhx/yef8lGCpJRlfhpJ1Vh/U4J1bt71
hadFsN6lBAc7fry/ZKWJ/U8J5I/2DrbmmAHlpwTN+/de3SPsjvV7JViWl78j
TTwI65dK8MRx/34J2wAcv5Wg9Prc6VsSXdBXCb5svuuk+8MY369KMDfta59i
Aw29lcDtynEFu9hhfN8qga3OF7NrUT/wfaUEaQoLs/qdf+P7VwkW//wrp9km
gutZJZB53PDxxU1NbE8lqDESm6dLM8f1kBKc2GbquCHEHdtXCc68Ha57YxSE
69/R3/Oy5ghLjPX/0fZ5tyOH6+GC9Wol2Ou3e7Vb8Nh8SgksJyeZrz5Aw/Wy
EoyXzHud3jeE60FlSGk27lTwLEEPZVBSrQxc3vibUB7K8PruHvLZUxQoD2W4
9lt8bjmPiR7KILks2Dgl1Bw9lGHwxfe4JRnu6KEM8offDJz1DUIPZciK7rnm
W+iPHspwsvHTgeJBZ/RQhie376TEFhuhhzKck/cqW69Pw/0FZXhRmecRGTqE
7ydlWNXk5RmuVYweyrDHHPaFn/qD8zlluCvvvlUoTRT7szIc3huRLXOeiR7K
sHjBQUH4I3P0GL3e9mcGAbSp6KEMit6LZzA3B6GHMmwU47lIXPRHD2WIGz8n
78xdZ/RQhmGmTPfAbCP0UIZFbpsGaO/H1huj7QNnV+z5PMinPJRh/v3A2Kst
ReihAmVfFyeoOdUQykMF+j+X3L8jJQaUhwoY3tyw11NTCz1UwGSb8KLDkhbo
oQLtXp4ryPqp6KECAQamqx0Sg9BDBegWX+kTwv3RQwV2Jrw8v2CxM3qoQHGY
E2NHhSF6qEBUma7MzAg19FABHbt3W1/CINbDVaAmY2rdtVff0EMFkqJO2ES0
1OD8RwVenEnQql4uhusdFXhbDFa3E7TQQwUebZXdITLHAj1G7z91pQ33y1T0
UAGxsoJNXc+C0EMFVtAUL+bY+KOHChwPt+4ypTujx+j9nbYNU1hqiB4qYCCW
OFNDRQ09VODbxGOXDB+MrcdV4Mrn4I6ghK/ooQIL1Xa37k2uxXqiKtgaBtam
vhfD8VcVzMunn7diaKOHKkj3wMqiuxbooQr659+49JlNQw9V2PekP9amdGy9
pQoMzoKljSL+6KEKUguqD0nlO6GHKmSqub680mKAHqpwqFE1anmGKnqowuGr
544/1hvA+YEqfIpcx01ZXYgeqrD5bWnakhl1OJ9WhVXXbuwZMBbH8V0Vvokw
rv89p40eqvBxrcUNOQlL9FCFFfqKeS/jpqGHKqxP0t/e1x+EHqpw+XvRukt5
fuihCtkJutp/9jmhhyqUnbLMmrzVAD1UwcvPm2m3QBU9VKFtan524Ll+PuWh
CkGVnFlhU7+gx2h7O722YgvX436SKtQ0rfdviRPHersapN7XDvnNZqGHGixy
t0y4MdcSPdRAaMuO55s6p6GHGvRdyeKZ0oPRQw1KTi2v7Dnjhx5qEPExjJVj
74QeapDU1z43R9wAPdTgQr2GwkFpVfRQA2dVmo2Iaj/ON9Xgza3J7incz+ih
BuJ9r/iCR/V8ykMNjrwbkovuE8f1phqEH7Xu1b7OQg81ePoXCh48tkQPNRh/
tPesWtB09FCDE6VbJb9YjO23jz6PkvLk7oV+6KEGz4wDGDe6AD3UQHNIEEPi
J6CHGpQeOMDyeKiCHqM/p6W/uX2kD+shalBuuIEbOFiAHmpQ1LgyJCC8gVAe
ahDlWufxdqEE7reqQdnahe+vmOmgBw2e+Fy4a6RshR402NgYt+3U0+noQYNq
5p++r17B6EGD2oRwzRuGfuhBg9veb+HoXUAPGhjcXrvggu4E9KBBs+jGhdsW
qKAHDYQXf78/U6oP52c0uGnsbl37KA89aPA67Wx0o24jrmdoEJJ9TzTrgwTW
f2nw8WHnspgsHfSggV258x+tCCv0oIFE2ThOF8sDPWgw9cSFENOlwehBA8/W
yj2aXb7oQYMdU007V68E9KCB5pSFimWP9dGDBo31E8tVFFTQgwYPfUONyqJ7
cb+RBt/OVB7IWfsBPWhw5lrP6diKRqy30eDLcKbiKhtJoDxoIFqR8+C3Hhs9
aKB9gVu4/70VeqjDyWC/V0b7PNBDHbKvSUv+3B6MHuow992zPQEvfNFDHcpu
zjXxHgfooQ5zauNq2qbro4c6jPbWEtksZfRQh2NnF/A9xXtxv10dvvRluL6f
mIse6rDSaGRWQFITzv/VgWY0fLUqVRLX++qwqzi02H4VGz3UodbA0nL9BGv0
UIee27fdbBo80EMd8hUdZufFBqOHOvjIxx9YvN8XPdQh/GW1f2AOQQ91SLZ6
M/1b5Xj0UIeCDzdPzY9QRg91SN/Paj4Z04P1qNHncVh1IPtvDnqog8OUkU2u
c5pxP0MdlJY3V3HVpHB+rg7t226f/PSEjR7q0D9TYWX1QWv0UIdKv4l9cj6e
6KEBoRq+PiOpY/stGiDy7r7iTG9f9NCAH5ttQ0ecCHpoQNcL18xdW8ajhwZ4
TgyKkdJRRg8NkHA9sveGdA+hPDSg3U636MD91+ihAS9fx8us0WrB9aQGOOwI
d7KJlsL5vwb0mrUcuCLCQQ8NuJFKHMobrdFDAyT7mT+vZXiihwaoLZFbvvLx
2HkHDbiYGNnMZviihwacWCv55hTfET1Gf9/hX9SoPB49NGBRfIq+0Bcl9NCA
wfAKv73HurHerAHjew4mNW54hR4akC6bovC7ooVQHhrgsllMS79XCvf7NOD5
8cgPghkc9NCAvq630stn2qDH6P0/EbYbYXuhhwaI317yXTJn7LwPHWbfLhWu
/jV2HoIOIbDuoTpxRA86/FTNnKZ0exx60KHCP4vpFKOEHnT4xi6KoNO6cb1F
B/MKz9RXkwToQYfclJHuu1f+4vkHOly7ZTt5OFwa6y10uBXvN1E/iYMedGDe
argY89AGPejAWVw/Xu6QF3rQ4fVfuxlfCoPRgw41af37ktN80IMORwSv7LcL
HNCDDjFHW7r+TBuH+1t0yJnoSHtjp4QedCi5R5rnJXdhPZAOHw6yvPgjz9CD
DqYHth5ss27F/Qw6WB2/bfOqWhrP+9DBrk2oubKBgx508JpX6+/ItEUPOvzy
y/7zusMLPeiwm6sx+3VFMHrQwWJxSuas9T7owYAfD997Z7s4oAcD/hqfuL20
Tg89GHDJaiFf/o8iejCg6/s5zozxXbjfzoA9yrs9LI49QQ8G3AiNZrglteJ6
ngF68031o0JkcD+QASWXZ0i1TeaiBwOeHh0ajN9rix4M6MxYspczbwZ6MCDF
7lZrSf3YeQcG8B5ZWevY+6AHAzSNn379884ePRjwyYl94tABPfRggNzZQ3lC
AYrowQAa33lV6YNOPI/BgJAVv7jRrHT0YADrzsWdZSJtWG9mQJF+SaPNdxmg
PBig5FNSOfcIFz0Y0PzOv/RYsy16MGBO0ixjjdwZ6MGAnS7dEortwejBgFcb
0s53i/mgBwOC0ndvq5xpjx6aoHLONNHDQA89NMHksLLjrLcK6KEJjN7secLQ
ietzTfA+sXZLzoLb6KEJoZeNAvgr2/iUhyac2DD/z4CfLNa7NOH8lMNpxhVc
9NAEZ+3k92azJqGHJtxIZNckWc5ED03wJLvqF/QGo4cm1MVY1tXkeaOHJkQz
S+RuF9uhx+j9v+LqX8rTRQ9NEEqr9pa1V0APTegPLjqXnt+B55E0oYAvfKw6
JhU9NOFs9PKkjsI23E/SBBv983Zfvshi/UYTdExqmpZY8NBDE1qLnnfvzpmE
HpqQFF385OrFmeihCeNPOgrnDY7t92pCbL6LRu9pb/TQhL7ScPGpi+3QQxNK
7cbPP7BOFz2YsP79HJBPl0cPJpx/N9zQMK8D1+dMUItJToqaewY9mHD8hwN3
j2M77rczoSoeLr/2k8PzUkxwqQiWlz/IQw8mPL992zLaajJ6MCHux2PXUxLe
6MGESbeUhnxGgtGDCTmphbtNF3ijBxPMrt+l3/w7GT2Y0F6gU9xN10UPJrC0
Zt/3M5JHDyZcmbjB+nxrO67PmcA20FWUztqEHkwQGrjGWJ/WjvV+Jkx5/uZw
aZEc7rcy4YXJgmf6lTz0YAJnYkACuToZPZgQEJJ6Qd7BGz2YEO1V8KplJBg9
mJAgIn7szARv9GDCpQyN01+iJqMHE1IKxCtrBTz0YELvim6jb9fk0EMLqkKa
tr3Z247rcy3YMmX36/mD+7F+pQWPLzpG52t04Hk+LfhdoT3CC5HHeqMW5Fu0
Hefb6qKHFuyedKHxMd0OPbQgzqb04+P13uihBZJr3FdcHg5GDy1wENvauKRm
LB9aELLdVjdDfjJ6aIF4YvV0/5U89NCCBv7mzBg9OfTQgjwj499B9HZcn2uB
movvfrdbyVi/Gn2e9+YfkmLGzttqQXtM9JPUanmsZ2rBVQP6ou9xuuihBYWp
oZy/R+zQQwsKrgZcOpjmjR5aEHH8nP+agWD0GL2ekJ+kauRYPrTg7+e+pqAL
k9BDC17LXjhqTeOhhxaMzumN5l+RRQ8t+DbhcYrXnTZcn2tDcH+3Gu/ONaxf
aYNK25xxNd0d6KENtCkGGisixs7bagPdyV5oc4suemjDB+vu9mYRe/TQhs/C
X5p3/vJGD23wtgiWCOoeO2+lDW5GR9NBYey87ej3m1eduGk+CT20oefl9Uf7
X3LRQxvO3bKs9xsvix7a8HB9D+O8axuuz7XBc/+PibUu97B+pQ3XzM3M05d3
ooc2RO8o1tvWp4DnvbUhY7v2ilQPPfTQBk7q1wlPIu3RQxtcjm2qiaX7oIc2
vO+bGTLrbzB6aMPM+fmBA5dmoIc2xNgOMO++HXt/aMPG2B/znFdz0UMbdOYk
KYbclEEPbeBFqT5wKh8776kN0zuM06rvP8T6FQvCo+6HypV2ogcL9OS+XPyz
XxHr7ywYZAakLE3TQw8WbPhmvty70x49WMC89PBVxsyx87YscPw23jGyJhg9
WBBbc1vR03YGerCg5bG7Scg8W/RggQ9YFMxncdGDBXYiO+ZFmMmgBwve2N2S
Mt3SiutzFky2P3N6EScT61csOHf844l+7y70GL2f1t+rZ8kpYX2fBaVXWj5l
y4xDDxYEdaW4Za12QA8WHE1cpNkU44MeLFg6t2r4+c9g9GABTUuO7ZjvhR4s
qLr499mdbhv0YMH7Zz3vfuSPza9YMHP/W7udmdLowYKtLeIPF6q24vqcBZb7
Xk96FJeF9SsWON9yXxnztgs9dGBfydKR7gAlPO+vA0edtc2zw8ehhw4snzvg
JtrsgB460O0w4ZDuCx/00AFzZbVyvYKx87Y68IB/4khJqBd66MAcB8OVF0/Y
oIcOBKSNvLu1i4MeOrBrw+wX+12k0UMHVkXbqiTP/4vrcx2AhZuuMkVfYv1K
B5a1mQ1nkG700IGg5KOFny4q4XkDHdg8bbd62Kdx6KED+bllOXrhjuihA8/y
b8rM6vJBDx3ouleekCkIRg8dyDxkskt/0BM9Ru8/KY5pbGSD53l1oLi1+Mkn
Cw566MCh2MYTOwrG1h86oCEek1Ce2ILrcx0welc3SdsxG+tXOnBxcC+cy+xG
Dx1YZHvxZlOTEu5/sKHhzfzWV1bjqfehOBvmluezDZod0YcN06/GXththOsr
RTZYxNs9iboXjF5seCKl32YWj+dtGWxwsEnaMSPXGv3YEB8f4g51bGq+zxtd
p5bVsGbPlUJPNhj+5MtvKW6m5psmbEiIdHA5GvkG589sGFpvtc3aqoeaf9qy
4WRnvIT35LH1Pxt6/0ZN/pw0nmovZzZYTh2/SnUNwfoMGzJ7P1+OX+xLtZ8n
G7LVI2dsOR+M9bPRv5+4cmTYyJNqzyA20MJ9Vggtt8b6Jhs8WKnR3clsqr8v
ZMOUzA0BKs2SWH9mg03FbL859Gaq/4exgehoVMZnvMU8s8G2Yuqfkw96qPbf
yIaOuVAkdFAZ339sOO897UKyuD7lsYsNba/ff6vpJDg/YUP47Qt7Dyb6Uh6H
2BAz4Rjz3qGx+gMbVv31u3Qqx4PyiGeDnOe7M/ZSY+dt2fC5MDC42Z9NeZxn
Q2XUybbkHZK4/mKDf4R+2ZbZTdT87Dob7sTUyi3qzcX5JhvUWn5JZpn1Uh7p
bHhssPmNWMnYeWc2HI9vyDZZo095ZLGhYPPRE4UOgP2XDdU2T0YCPvtSHm/Z
IFIyZZPRxrH3Lxs2TmoeHFrgQXl8Hv2+PLvi4RtW2L9H28tjR7uOPJvyKGWD
cslVdpeyJI4/bCjXWfbn1flGqt5Zw4ZJ9dnOrMkfsf+zIew1b8GzB72URysb
WpTn9i80UMH9JzYs5vEOHynVpzz62VD1dTDZaA9gPjjQUnuyrVXSD/PBgT3r
XG275gZjPjggzyiiOQxOx3xwwCYiswe8rDAfHCjzUytWOornbRkcCCuZ06Jw
TQLzwYHC2Y6TDP40UPN9HgciJ39K6YnKx/ULB0wFIxkJVn2UhwkHei9d82RF
qWD9hQMZ3xKzs6ZPoDxsObAk9WruzreA+eBAq/za6JmOfpgPDqRoWlWpuAZj
PjiQbP2SPTthOuaDAxHT6gXDbZaYDw6wZJfYThHRwXxwIECYnlPtIIH54IBo
rPTSFOMGavxZyIGHuT+GZRd9wvGUA+NCVxTPe9pHnScO44CxTxkdPqvg/IMD
FfvPHXr/dALlsZEDn76dDS2Qd8J8jLa3ZbXk8g1+mA8OyK3fPPOYwVj9hwMm
P+pdZllNx3xwYJuTEM08Yax+zYEHhifO5G9lYT44IOwZOrKyaOy8LQcWpavF
MrbUU/Pj8xwIHIj9ERjzGef7HJDRd87XcOqnPK5zYNZr8SV541Rx/ObA1d45
xZlGBpRHOgcsXp5cqxXghPngwC9DScbEND/MBwf4hg5yaxWCMR8cWHnP8zMU
TsN8cIBzlvOiiFhiPkZ9nxU0XO3Qxnxw4I3XOafkNeKYDw5Y5aufjH5dR9Wb
S0f9Lx3e2XbzC9bPORAirXYrL7ef8qjhQPiU028+RqnieXsOpHPXisZfNKA8
WjlArhTTViQ7YT44cGjP4d2JFX6Yj1GPPfTi161BmA8uLKjcwlJbNw3zwYWz
rz8/rKmzwHxwYcupX9xXq3F/R5ELp3NdjNfJiWM+uLAyJ6umSKWOWm8xuODk
2eHU8aUQ149c2G61JPeQ/wDlweOCx8rENVOKVLH+xYXNB9OMF6gbUh4mXCi4
a8p4XDN23pYLifGyC86r+WM+uJC3WNww/vPY/iMX3O/fTCtWnob54MKraao5
c09aYD5Gr9cOkRotWpgPLvACMy9X3RDDfHBhT5DqHaHFtVR9NogLnPDgrWsH
vmK9mQuX5MpjZv0aoDwWcuGvia2lnakazv+48Mahpm7cMUPKI4wLFmWPVomb
OWM+uDCnIFLMdJo/5oML9X9HDtTfC8J8cKE/64d07IOpmA8upIR3iFgTC8wH
F06d/OmQtEoL88GFiNXlh2umju1/csF3aer9zoc11PokngtV32Uu7dUrwvUW
F4w4FdFT1gxSHue5EB73cPOTw2o4n+HCEssLO/5KGlEe17mQWdOUGLTdGfMx
6hd/n+EShedt07mwat5my0/HgjAfXIh9bdzt5D8V88GFsK8TIazJHPPBhQwZ
dpN7GxPz8X//6B3eVC+K+Rj1CmXPvipVQ9X7P3MhROF2IPH5jvsXXJhyo3tr
oPAQ5VHKhXt0WVdB3dj+KxdyP5k8f7XXiPKoGb2/4TNBd945Yz64UF6Quu/j
PX/MBxfMJZv8/MKCMB9cOO6h7Nvc7Y754IKG+tJrPYnmmA8erB2vb6i0iYn5
4ME+u3fjjxwWxXzw4Igy56nkPDwfoMgDz08qrs93FGM9ZXTdaTHknRg/RHkw
eJD3ZJJ1iDsN64882H63VPW6sDHlwePB7RdfyqTVXTAfPCgtKzjCr/bHfPAg
0Ejv6w63sf1fHlR/288+k+iO+eCBmKEh/ft0c8wHD6b/ePasaVAT88ED66Pb
A3QmimI+eHDLwiVS7tFvqj7uyYOcRY2eSndKsN7PA/OXF9WYBsOURxAPtqzK
jYu7RsP5Nw/ye+2PXN9tTHks5ME9j1+pYaEumA8e8Jw6nyupB2A+eJDV4zZ7
HjsI88GD+wMTUoC4Yz5G79d5c5HooBnmgwclrI+JhdGamA8e2D8x69T/KoL5
4AHddUfXVfnf1PrwEA9SD9wN9qsYOz/DA6Wrh0R+vxymPOJ5sI5rPmGltDrO
70d/nnjsxQdRE8rjPA+mLYuKLUx3wXzwYEbddLl09wDMBw+eZEvMGe4NxHzw
oEM+z7j5N563TefB3jCL/K13zDAfPMjMD8t9rqSJ+Ri9/kTL/ZciRTAfPIjk
DCh9WFZN7be85cGmZ8Zx51RKcf+IB2FyCVFCISOUx+fR/qDut6shXB33v3nw
ze1ts+YBE8qjlAc+R7d8chabgvngwYMoW37ilgDMBw+WqWQUr/wUiPkYbc+R
o2uTD7thPnjQmXx4vsUiM8wHD3pOc86eT2ZgPnjwRTQqcx9XBPOhC01FuRFh
2VX8/wBrnkXu
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox["r", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10.}, {-99.98937918308447, 99.99894781345763}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.767840920717401*^9, 3.7678409495484056`*^9}, {
3.767840982996903*^9, 3.767840999239007*^9}, 3.767841061383613*^9,
3.7678410980091476`*^9, 3.767841130477839*^9, {3.767841187575012*^9,
3.767841204123508*^9}, 3.767841235557798*^9, 3.767841404787808*^9,
3.767841904296548*^9},ExpressionUUID->"c87ee743-9552-45ee-8ece-\
fd4d9922659d"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.006944444444444445],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxd23VYVEsYB2Aa6W522cDGutiK85kXW7FFrwoK5jUx8NqiiI1BSbdISUss
ISkpSIMgnYsgqEhc5HzLPo/7j88Ae/Y7887v7Jw5I9PkpNEhIQEBgWZhAYHf
/15WDvq71vI28X9yX9NR2YVQ7eckvrm74MI4LxJNt2rbHO1CAp5E92QVx+Dv
vUjF0YusN1MLiKPD75c/UTEbf8C5pp7EjP59EKn/61+ajEAXGWmM/CSUMDjF
Rxwc6/H94US6s/axRF0+kSzxPGUgGUXUD/w94Yp5DBk9nEMMGX54xm5lrCeZ
vOdxcu+kOLLJSWnO4beuWE8CEcCX18i7SzwTiZFqm61u+StO++jnJZFXL6vf
L9vhxZmt//uVQibqxM6QNHzHoT7/PRFd85B+0qKAk9I7aeQTUkmjqV1I1YQG
jtRoPelEZ++5fd6DXI7R6AdmEJ/OxoaKrfUc6nwziR03fM4dp3zOF8vfB8wi
ilyNt1r90Ryq3mzy7MLHBr+TnpzTv8s7lUOmFoofvNvtxqH6J3esfuqVT+SX
HUtpbHAi1PnkE3HH6EZ/Xy9iWPv7AwrIw9CUm0tj3xHq/AqI2Lp34tsSC8iT
5N8n8JHs7b6+Y/OJBjJ6uvqFJME4MSbuB5eMnk5JIbnlnvX2uByv/4vI9IjG
YPq2fKLzuxz6J2J3SXO2y6NoQvXHJ7KpZX3Aq/GexNzs96uYbGuUmeh424NQ
/VMyVv/voykHlZAek/TLF8Y7YX+VkkmaC2rf/vTi9P0+XG8p2bbl0etLM2Ox
/8rIa2vO0gPSHzlLRgdAOfH5WyqAG9aA/VlOVtGeLzP5yuWMlmdVQT5eUq03
yqrD/q0k5UYJu/Pk8jk52b9flSTefHjzgG409ncVaesMlNOu8uCojBZYTfJP
XNTd3OOF/V89Vv/o4fZ8JpZ3EnUdHjjiz2vI+86jy03XexPqfGqI7cDTObG+
sehTQ8RqY3te7vpIqPOrIbr2wluC+xvQq5Y8UjRrsG/iYj5qidBhttcLqzr0
qyXk0uy5U+zyCHX+X4hr0WrO9Pgo9PxCFt47xGa/9CDU4b6QxVHGOT82+KNv
3Vj9VP/UkXcO62pzFR05FE8dWdv0fEaihzf2Vz0xqTwzQZYZh+O/nqjV2TT/
8P2I/VdPyP7Ao3eWNnKo8dBAejL1/ztYwcX+bCCLF8d4Llpah3lpIJlx/XPL
5POwfxvJ4ZMXCqftiOJQ46WRNJz7HBe4yQP7u5GsexS1ZOHUtxwq701/9H8T
qflvxyeBtw6EGk9NRG/e3jN5P73x75qJ3tZviy6/ikOPZhL6TW+ezfeP6NFM
tmQc4R61bkSPZvI2pyohM5uLHi3k/LNI4bWDX9CjhVQ5LPH2epCLHi3khK55
3NfuSPRoJTNfv/SLkvZAj9axeqnxyW9THm0k1S1LJuSQA47XNqJKlzK2M/JB
jzayevGZTCnNePRoJy9zY6ZvMCxEj3aiu/psqFFeI3q0k5ie4jm5sVz06CAN
88r3ZMZ8QY8Okht2VddKMhc9OojO8X2+Z55EokcnOTlntq5Bljt6dI7VS3nw
25QHl7jr6Ky+OMWBUB5ckmvVWE8L9EEPLrGZdOR6hkM8vq+LsCY33fnbsRCv
z13koEaqw1+qTejTRTaOjzG96MfF600XCbG8/V/c+S/o1UViZkhZnLPJIdT5
dhGrbqVw/xmR6NdFGqava154zx2vT1/H6qU8+W2qP76SFycDDsUN2uP15Su5
udxk0xEJX+yfr8R1d+jmd1oJ+P3wldwTWvfzYkch9lc3OXepesnwnia8HnUT
mKzgmWfLxf7rJlYJThmTZ3/hUOOhm3TBdYPj0jkc6vuom+T1rFR/kh/BofLa
TQpX9ioErXbH8d7zx3jp+WP895D+DJ8Xp6rsCTV+eohf2bxb18x9sf97yIzE
3Wktrgl4Pe8hN8+69dUvLcLjfCN3Ev3T33g2occ3svxqKK3Skose34j8vmla
qt216PGNnC0aMjv0JBs9vpHW9zL76Wcj0OMbWT3/xr5nUu7o8W2sXsqj9w+P
XmJ0aKSKdHscn70kmw4x5um+6NFLTsK5yQcmcNCjlzhN2pb7yK4IPXpJ/cMM
9xmtTejRR4Ss/Z/67OeiRx/pNBPztQqpRY8+8iBqnttO1Wz06CMlvkYr16tF
oEcfWeFj0dyU64YefX+M9+9/eHwnS0qGTL7H2uP4/04aEw/KTZ7shx7fybXN
vROnBHPQ4ztZ9Fps0qXOIvT4Tpa9q/rn8sxmPO4Pcro5ymP+Ci56/CDdXuFB
/52sRY8fZGMcV5O4fECPH8RsT0anSnw4evwg16beOOX/zA09fozVS3n8+MPj
J3m8yWHi0Wh7DuXxkzgrPRuX9cAPPX6SMknb6gm0RPT4SSJ1LOk+qz6hx0/y
1NOv8Ob5ZvT4SR7lpH56NZ6LHv2kW0r17vD0WvToJzlXRcoVJ31Aj36S+DJu
5pmD4ejRT2hGyaziXbz5Tv9YvZRH/x8ev8gSty3+x+Ls8fvtF3FZW5K2udsP
PX4RJa2k4lbTRPT4RX5E5umqu31Cj5F2wuva+XHN6PGLHHzTN6tahIufM0Bk
Y5XjFbg16DFAKgoefs4Oy0KPAWKb7LjQWCYcPQbI7NcyeseZbugxMFYv5THw
h8cA8Vfb37J0ZPxTHoNkhcjhY+m7/NFjkBg+iEhvCEhEj0GSY22yqaD/E3oM
ksmp2vmPBVvQY5C0vV1oPe5LJ3oMkuyXUU2RwTXoMUQWF92qNluahR5DZKa+
XkVWVBh6DJGDi6yDiopc0WPoj+v/0B8eQ6TvROHNzaX2OB8fJqyhwuxZKbz5
xjC5GLCOod2biB7DREm+4sfH7cXoMUzE1LcrXlrVgh7D5OnsvJeT4jvRY5hM
3yBW1X2qhve5kLbe+3FFfiYZ7W5lAdiS+CA11jQMfQSA1r/wpdsRVzLaXQYC
wKuX8uK3R0/XTABKjeWmqnHtOaOnYykAc+8nedhNf80ZLfexAOxSIDa2JIkz
Wo6nAOhv3l1BDy/G64UAPG/dtaPRpoUzypstAFtpQjvXvuzE64cALB7ftCfj
rxoOdfkSgMTbbp1sk0y8vgvCFJ0FSycqhHFGD0cXBMGFFt8WCLpyqP4THKt3
tHv+5rep/hSEuUH5c3WlHMhoeacEQervC/MFX73G/hWEYusYkw33k/D+SBAe
c4o0ohRLsL8Fgejv2Z6Z20JGTzdZEFo44yZePcHrf0FYaPLG5mzrZ7wfE4R/
w/Z/nd+bgR5CcKwkLVss8S16CMG9HJNmVycX9BAaq5fy4LcpDyGYaCvnpann
wKE8hKD+bmzYeakAnN8IgcUev86tpUnoIQSFnocvOJ8pQQ8hCOpYpq+k2Ioe
QuD+vUU6b1knegjBxxAz/WenPqOHEOy8nHxY2SYDPYTAoIT5Zusp3vxSGMRP
L9xcON8FPYTH6qU8+G3KQxhapcUK/Dfz5j/C0N27N2X4vwD0EIahJW1/BUxI
Rg9hUNy1xaiwsAQ9hMHOvSklfGsreggDc5vo+XWqneghDDP3Hy3p+V6NHsLg
mjDeJZiRgR7CsGiKjo8k6y16iEDMU0WVT6XO6CEyVi/lwW9THiLwz6O5gg8v
O+D9lwg82dlp6N0VgB4iEOZ2tHX7+WT0EIHsWZn2u+eWoocIvFJVl3V92Yoe
ItBX9qxdpLkDPUTgnbG+lf31avQQgaVuPYeEY9LRQwRkYzoPsj6FoocIDO0+
uMv3sjN6iI7VS3nw25SHKLSlHpK/5+9AKA9RiDNdlnPS7A16iIKH0NG9e9OT
0UMUuAPf/5rtWIoeohAfeHd8ckkreojCauNJLeLRHeghCkzmV28ryWr0EIXQ
C5rnJbeko4co1ExcLW53LxQ9ROGX6dPwDUxn9BAbq5fy4LcpDzGo/eFncbTC
gUN5iME5GZsMs+o36CEGpm0WJEUjBT3EYIG1/ub9w6XoIQZBkcaZMupt6CEG
1dFu8w7d6UAPMXj1OSAx4UUVeojBtHt9HxI609Bj5P2Vl2imJBQ9xMD1TRrk
Z75CD369lIf4Hx7iIO60PFVEwRGv9+LQ2rM11XZnIHqIQ3xYfNfDEynoIQ7t
By5Hfj5Uhh7icLyHK3xmRxt6iMPm4DI7vS0d6CEOuraLJ65iVaGHODjsOZSq
8SANPcThvkds9PW+EPQQB7v4lT6zLF6hB79e6jXuD49xYDLBUu+vNY54fzUO
fJ5fjx4sCkSPcZAxQzApJTkFPcZB4t+7SsNyytBjHKgbJhp8ftGGHuPgWUOG
3Ql6B3qMg1LV20xaSCWHmg+MA+eHQebKU9PQYxz8V+b3vSUoBD3GwcHTDpct
2a/Qg18v5cFvUx4S4BIlVFBwx5FQHhJwStDCIWRLEHpIwOZtmwaPaLxHDwnQ
k+x5Xjm3HD0kIKRnfcGKwjb0kIDxNY1J85vb0WPk768k71xFKtFDAqoWj1vm
/yEVPSTgmb/QL4fDIeghAVbVEyPCi5zQQ2KsXsqD38azAIn8ozVpaY4cykMS
tLc5vggvCkIPSXDIWGR65/R79JAELXlZ9m73cvSQhNYE1Yu2cu3oIQldIbmb
XELa0UMSFI9OUUzJq0APSYhunTBYcCIVPSRhOW3TwfvsEPSQhGZ/z6I2ayf0
kByrl/LgtykPSRiY/o/vDwknnP9IwQ3Ri8JKO4PRQwp0/75oS//wHj2kIHlN
2GY9mQr0kIIfZ6/mRa1pRw8pyJlJsw260I4eUpC9/IXE8wMV6CEF363eCVkr
pKKHFGycf2rCaU4wekiB5OQpjXrghB5SY/VSHvw25SEF7cfkbhhtcuJQP5UG
E/0jK4urgtFDGhT/vu04f0IqekhDpv5ZHyPLCvSQhoFE2Ylet9vRQxoi72qd
sjTgeUhDVfnLHbHfytFDGlpK7salRb5HD2nIoiccWLQwGD2kwcjpnPm9fkf0
kB6rl/LgtykPaXhguuhKooMToTykYfFfMdVC+iHoIQP3u+73ld5MRQ8Z8HWS
YX9orkAPGWiZZXt7VXw7esiAv0FAmaIQz0MGdhXOfL/gXjl6yMBVsytDd/e+
Rw8Z2NOYF3Q0Kgg9ZGDhiexVStGO6CEzVi/lwW9THjJgrXy1Tr/RiUN5yMCi
k5N2br8Ygh6ykPeCqydWm4oestD2WWPBi52V6CELRONO7KNv7eghCyAZYGCd
2oYessCtfeQvp1OOHrJgdOLrojTR9+ghC+cthSb2zQ1CD1kosFkhVnvRET1k
x+qlPPhtykMW5hT/WuIy5xWuN8qC6S2hlpaEEPSQhT3Ggf+mQhp6yEF+YH17
UGYleshByG7rBcendKCHHHAabTe33W1DDzko6wmUMogsQw85mNEovvtycAp6
yMEu33bTwuhA9JCDZdsbx0sZOKKH3Fi9lAe/TXnIQc8M7o7eu69wvU0OVHYt
N0sRC0UPOVj5sm0/zSMNPeRh8QOQVFtchfMTech4EymW908H+sjDMQ2rg+tW
t+H9nDysO1yRlLShDL3kgbuust19dwrO7+XhF21ixc/FvO8beThR8+FJsIgj
3v/Jj9VLefLbVH/Iw23Rey7Tq14Rylce/jHL39K0MRT7Rx4SgwXWKYmm4/2p
PNRleDRmBVdhf8nD2QUd1T5POwjlLw+RJbb9sRJt2H/y0GpstcG5uRTvZ+Wh
/fmmX/riKTi+5cFVM+76vpQ3+HxFHu7NVDDn5jng9YdfL3X/y29T/S0PvdUD
lsvnOOP3nTw89TkRa+zI6395YAo79gQeScfnAfIwFK7gkKFbjR4K8Pn+xEn1
yR3ooQAzXDOYazJb0UMBon1vK+XdKkUPBVhR5rRQLyIZPRSgcNEe1sDaN+ih
AO7SUw92u/DmYwpj9VIe/DbloQCOh0su6z1xxvGpAHlPG9eObwxFDwV4uDwi
ojsvnVD37wpwX384StqpGj0UwPrIOfUL3R3ooQDhQ4XS4tat6KEApctW6mxn
lKKHAvxYklp4+2AyeihAedJljbTiAPRQgAHRaJ2G0w7owa+X8uC3KQ8FeOTh
9bOhwxnHvwLcSnBYsUb/LXoogPoZxzPN8zLQQwE8p996/lzxM3oowF+uBc6b
GJ3ooQhB1sePCa1qRQ9FKLihc2xWQgl6KIKIeZXzfJVk9FCE96tyrCJMA9BD
EVbovXo8YOiAHopj9VIe/DbloQhC40WUjm1wwfWYkc/Tnnw978Zb9FCE78Zl
Ts/dM9BDEbykl34zvv8ZPRRBRbb32YF1neihCL8EXwitE25FD0VImXHaZd/e
EvRQhIsb7eqXpvPupxVhJ+skI6n7NXoowh4Xbuk5Xd7zCH69lAe/TXkoQqn0
smfvQl1w/V4RHJe6nYsteIseiiB1fKrekHQmeijCstUf/IKFatBDESI8rjk7
ne9ED0WwPJoh0cNpQQ8l+Gsga9vnwWL0UIL8wiQ3J8sk9FAC6fFz/6m99Ro9
lOBj4sFNL0Qc0ENprF7Kg9+mPJQgk5EbXqDmis9LlCD1ycHJSuww9FCCt+/W
+kyxzEQPJSi4GJ6+DmrQQwm08/TMu1w60UMJmszHJ4r914IeSiBcYFkV5Mpb
L1ICw4nPl8KMJPRQgsPzc7bIqL1GDyXwz9DICG6xRw9+vZQHv015KIG8z9mN
odddOZSHEizv2LWuyiIMPZQguOejNrMlEz2UwHHgqs6tqzXooQTGfqrnjFI7
0WOkv6Ue5r6Y14IeSmD788b17GXF6KEMsu2xtVMaEtFDGSoKZmUbvPFHD2Wg
hdzxGl/EWw9UHquX8uC3KQ9lyD2QabaznbfepQzzku8p6mSFoYcydLn8YjTt
4q1XKsP01499N8bXoIcyKBod/je8pRM9lMG8KqMsqLsZPZRhvvPXhXObPqGH
Mrw89kxp+yveeqoyfFOOmX10uT96KENodIfg4ff26MGvl/LgtykPZVBrn5V1
cJobzveUoYrbZvJZJxw9Rs7v0szyW9lZ6KEMvb73XgcP1KCHMij92FonIc1F
D2Wo3xvUsi+wGT1Gjt+RLN/64BN6KMP6xaAcvzURPVRg8tZHgfcr/dBDBZyi
SusH39mjh8pYvZQHv015qMB4o/wQITM3nL+oQMdScXf2hXD0UIEkF279AHxA
DxWI8Z/0ynUxbz1fBcwfXPJepcdFDxWQCvH8HmnejB4qIGhXGNWg/wk9VMBW
Vs1ht2wieqjAPIsjww4XeM8bVMBPNHvO3Wh79ODXS3nw25SHCly3PdMr7ubG
oTxU4HOOcmd3Xjh6qECRtbLlrqgP6KECa7oJaF+pRQ8VOCmceG7fGi56qMDx
p2nGScxm9FCBrhqrvgmVReihAv+GEaGtthz0UAG1O6WOj5T90EMVHiyhd6fE
26OH6li9lAe/TXmogv89LSuLCjdcb1SFN5WkymhKBHqowjwnbwPXGdnooQqH
G82vMBNq0UMVhPfHnV1txnveNdI+Gr79QUUTeqjCXU2hVQFWReihCr9qRNeu
k+SghyrsPNjkfSDMFz1UwTrhW4DTB97zOH69lAe/TXmowsQUN80N6u443x45
nz0aH9bciUAPVSgXUTj/yT8bPVShuHL63YDhWvQYOV+/oNj+a1z0UIVJTsut
dF80oYcqHHj9eN6pmUXooQpXi3bLvLidgB6qYBecWC+91Rc9VOHp3nzOpDp7
9FAbq5fy4LcpDzWQvnd4zrPtvOetarB5+trLNXUR6KEGXqmRWYITctBDDQw+
WwRFLP2CHmpQHRJed8SO97xdDe7NenHo5Qbe82A1+C9whfzZykL0UIOpkLpU
VzABPdTAfJL6J+s+H/RQg8qj3v+kiTqgB79eyoPfpjxG/t4sY5LhS3cO5TFy
/CKJu1rLI9FDDWrL6PeneuWghxqw7eoeLLr9BT3U4Pq1O9cfveGihxp0u2bk
d4g3oYca0F5tmB16rxA91GCB9PhpX6/Fo4camLZWPchz9EEPNXj7dV2x7hwH
9ODXS73U//BQhzJB2s9/S9xxvVcd7OXd6wS9ItFDHThcvb07dXPRQx3Mlx4o
mpf+BT1G3p+QmrCfw0UPdTBYmHh5blIjeqhDy67TcRPnF6KHOnhd2ybdLRCP
Hurwo1+vuQx80EMdzhv9/HjwrAN68OulPNThwLy7KYGfPuJ+B3UglVtvSWl6
4P2nOkSkLD7sJBaFz7fU4VbKreePfXLRQx2eflz+n7dkHXqow83SCdlleVz0
UIedkVXnL1s2ooc65IF6U2ETb7+KOlSKxZnRb8ehhzpoChpt9mj2Rg91CBpa
fo2kOKAHv37KY6SeiqYrzhdDcH1XAyQU3wHjHw+8v9WAUzU1izqPRqGHBgTP
kc8vnpKHHhrwPeDZo6sb6tBDAyI1je70VHHRQwNOw7/+6fqN6KEBXmIVvm/t
P6KHBljsPc05LsHbz6IBX/dOGWDaeqOHBuiazlJaOskRPTTG6qc8NOBMqKAh
zPXD+38NyNiy5mGopwd6aMDBXU8thAqi0EMDpKo7DswJzUMPDSgf92FHvG0d
emjAN8O8bL8WLnpowLGCjp3jOxrQQwMqKyppSWs+oocGiPVFVBU9iUUPDWiR
jvXZYuCNHhqwf5rQIx1fR/Tg1095aIBInsH6alMv3F8wUr+t+ubkVg/00AST
1OUnq+dHo4cmCMT9PFGqnY8emiDsE/SXcUkdemjCIj3Wit5u3vN2TXj97z5n
Fx/efjhNqNukRR8YLEAPTZDcH2GzXjMWPTRhyvyPjTNbvdBDExSa4lRWrnJC
D82x+ikPTdi79XDnZz0PfJ6rCcWxF4x36HuihybMy1103cYjGj00YaEQY8Uk
k3z0GDm+gWX0Zm3efkJNcHHa+eTTTy56aEKw0Mmvi/c3oIcmrBUyCdr/tgA9
NIFt3J6d6/0OPTRBVzOxINzeCz004c6kvU8CZHnrIfz6KQ9NuL/8zrGHUW64
vq4Jwy66389e8UQPTeCGGsyTkY1BDy3wGTzS/cCPt19TCyxFZz10OFCPHlow
viBI7+8hLnpoQc+EYBcJzQb00IJdk4ts2swL0EMLJp9qD92o/w49tODFUYft
ZYa8/Y5asGnmjK+7ZJzRQ2usfspDCywEI4+c+scV18O0YHZ1hgktk7ffUguy
pYqmnrwcgx5asP31WlXJrnz00IKs5nVPpvrWo4cWWAd2r9IV6EIPLaCLZG+X
KapHDy1wlLvv7UAvQA8t0GfdvZaRHIMeWjB3buMXh35P9NAC+1vzZotu590P
8uunPLTAzNjZ0KHYGdfbtKBj8JnhDlUv9NACkcdO7KjWGPTQAqmSof0e8wvQ
QxseV23zG26vRw9tOD5jWLZsmIse2tDj/t1u06N69NCGYG6Tj3lxPnpow9Ud
hlYzt8aghzYIan7J7Qr0RA9tqFv4xoom4oYe2mP1Ux7aMM+Tbjg34BWH8tCG
Shvr9RMPeaGHNigcGurrMH6HHtogunn3wV03C9BDG34s1uqV0W9AD21Yclr1
148BLnpoQ6C79YYKQ14+tMHz7oozRo/z0UMb5gceN7zeFI0eI++PG6orM/FE
D23QXmQ0nT3NHT349VMe2hAxeevOrCTe8w1tKLRbf+5phBd6aEP55ksemnnv
0EMbaH2OnFk5BeihDQGZC5zWX2pADxoc3zLhsf93LnrQYHBv4awIYV4+aPCk
Xd19+2reflsatEe77Az+Lxo9aCCV86Rso4YnetCAWfVtsLDMAz1oY/VTHjQo
M+AkmEnw9tvS4H6pSZqTuDd60CCqdNbSVSti0YMGsqbHv03X+IgeNKBruvRG
cBrQgwZnVxi1tXN5+21pkBK45d+GhDr0oIGvhrr0aZF89KDB7iSTS5FK0ehB
g8Pr9Mo3FHigBw22lx/x+PGfN3rw66c8aPCdNuND6HlH3N9Eg30lh53WGHuj
Bw3cDwSJX4yNRQ8aJD4+dH+L2Uf0oEGA5ipTAzHefk8a7CxompzWwNvvQ4dU
o+X9Zyzr0IMOFx7cvr34Rh560OFiprvlwzdR6EGHRc+TZT/aeKAHHc5Z9GeP
3/8aPehj9VMedNj4y3ZSjCBvfZcOTlcc9niFeKMHHTzcpbbGzI5DDzpodkl9
9Qj/iB504K71v1C+rhE96CBz78e8BWVc9KDD+g3thgfn1qEHHWYfnT018lcu
etBhk/dU42l/8+ZXdDC4uUK8eKUHetCh9p/acc9kwtGDXz/lQYd96tcvpHjx
1nfpMM38bHiguA960KHReuCZQkgcetChyV3DVkekED3oIDH5febNZ43oQYeX
u80F12Zx0YMOx488fcnp/oIeOlBjfV3b8GIueujAWS5MfVQXiR46sHi8747t
Qh7ooTNWL+XBb1MeOnB5z0T3x8a89V0duH1u+5ET+33QQwcuGNw+YjMtHj10
oDxsV2L21kL0GPm8Z4919cob0UMHtghXzBKM4e131oHt+hFeNsFf0EMH0vpD
+9r6ctBDB2YMZ+r634hEDx3oGx85tDHRHT349VIe/DbloQOL7I+samTx1nd1
4MMW13PN73xw/70O2CzTvTw1MB49dED/bVvaG59C9NCBXHrGjg+MJvTQgTDp
VedMvLnooQMX2z4OZh3/gh46MOd0bbLjhRz0YMDuiK7n55mR1P2tKAO+NFrK
ca65ow9jrF7qcQ2/TXkxIEC/+qnhD9xvq8GAgr5pP8er+eJ6FwPile1ChqYn
UOORzYBN6TnFyT8LcT2SAQT+Ndtm3kSNz+kM2FXvQj//mIvrxQzwTMyJsZqC
92fzGSD7XUtnQ382ejPg4S1TLjc5gtovt4wBi84cGnQDd/Tn1zvaf+v4bWo8
MCBJ2OR6cpk91Z87GJA2oYhMtfDF+R4D3q6Ma5EKS6D69wADmLrzlRQ28NYP
GLDMhWmcENhE9fexkeM/77ix4gIX75cYkKov8o7TXEv1vwVj5Pt1qvLw1Wy8
n2XAI5mlHBmzCMrjOgOGOPrG3ULuuN7Ar3f0dG3+8HjMAKVAjsb7VFzfes4A
t9qW98NFvP22DOiccGjr3gUcysOFAZNbXa0cPYvw+sCAhdc2WfT3NFEefiPn
a5d5u3gPb/7PgIzgFIsrvrWUR9hI/S96V/iK8tYvGJD7Mj04UzKC8ogfGQ8N
e1mhaW64f5Ff76hH+h8e2QwoG061lIq1p+Z3BQxwcJlC85/rh+N75PfzhiV+
JXEoj8oRn30mrAP9RTjeGXBl4uDgwAJcX2tkwMS1CwXmAm/8M+BG4p7pKWa1
lEcXA4RqDTnk0QfMAwMU4+Lvaofifs9+BixWbLYov++G+WCO1Uvlg9+m8sGE
ND/p60+j7an8yzFhOG01Y4ajH643MuHj0HPOhQm431aDCZf8JN+bG33CfDCh
Zrz+xZhrzZgPJmwym7ruBJOL+WCCvk9yyvMJtZgPJghW6c5MVv+A+WDCw7KJ
UwR24frefCZ4e0DVcSM3zAe/Xiof/DaVDya05shVXIm3p64v65jw7rJyiN2w
H863maChfesW80Qi5oMJHjMeTQoJ+IT5YEJjZsZZVmoz5oMJO2bF+94V4GI+
mOCWXVTT21hD/f+KY0yoJLFBE72zMB9MaPALsjshFI75YMKa7G0sM003zAe/
Xioff3hYMaFf4tFV7UxcX7RhjsyX5w62mvnj9ZgJKrTM6QIRiZgPJhxXutGz
WKwY88GEU1kzOFMkWzAfTPg8pBf9pKoT88GErBbzkhbfGswHE2L+0ug7op+F
+WCC78fo5n8CwzAfTFh9fl+pTbor5oNfL5WPPzySmXD2rlphcbk9Nb9OH6nX
fufsGfn+eL1nQviMcnH1oUTMBxO2m2p7yZkUYz6YUJV/zeD9hhbMBxN0CgMH
nkd3Yj6YYPreN/XsEXw+08iEl5aWU2+mZOL/d2FCZOSWnTm7wjAfTHjar2Op
uNcV88Gvl8rHHx4CLHBb6bxgerc99X0oyoJyh7Ka44te43ovCwxbzzz51xD3
e8qxYM7+7S5TOMWYDxZElasr19q2YD5YEKA6Zan7007MBwtqX5RdfDm1BvPB
gsMD+lpHt2ViPliw3i9DP0w8DPPBgkVuc3pMel0wH6yxeql88NtUPliwp3na
j0hZB+r7dhkLuH6Trr72e433Oyy4fi9n6rjnSZgPFthUPtV4TCvBfLAgNvrr
nTPFLZgPFkxW2aiVcrgT88EC2rxsNf/Kz5gPFqzJ3DCg2cJ7fsmC9kKbdomo
t5gPFkiXHKmwfOKC+eDXS+WD36bywYKgT7ZtKjMdqPXd6yzooZ3s7FILwPkJ
Czh7r11rrUnCfIz05za3meRKCeaDBbMv0NhHNfD5+vOR/ojhbh23pBPzwYIl
p6w89pt+xnyw4Mqz/OBHVzMwHywws+gTzjZ/i/lgwYajUiHG010wH/x6qXz8
4RHNgjd9ry8MbHOg7m/iWRAT2/pr1b0AnP+woNh4upTmjGTMx0j/2u3LXFRd
gvlgAbmU4RJt3Ir5YMFfp6ROXlPg7Xdmgczg+8IdbdWYDxZ8lrlwI0ElA/PB
gv6A1ewejbeYDxZMuuvZL5rnjPng10vl4w+PXha42D5onXjdgZof9rPAqiet
PmIgANfb2fDy4FH7V1eTMR9skJPWDLgDpZgPNtgf8hHc6NyK+WDD3knrxObV
8fafsOH13dcnbM9VYz7YcC7D+ohXUDrmgw3tqkKDl3JCMR9s+G7apX/ljDPm
gz1WL5UPfpvKBxs22Rz6sjcI55/z2bBTXiJ2xZk3eL/JhtDjJcnn85IxH2y4
PCtoH8OrFPPBhjvnHG1o1a2Yj5Hfpz03XhLWgflgwyFP4QKl4SrMBxty3e9+
WLA6HfPBhpbnJ0/tvhmK+WDDf5meOu/VnTEf/HqpfPDbVD7Y8M9dQ90TNbi+
bsGGb8MP6IMtb3C+zobVX30vBDFTMB9skI9K3ygpUYb5YIOJbUCBMr0N88GG
TxNM3nrd4O33ZMP7Ob2d1TZVmA82tHX3Rl9sSMN8sCGzYLbJ4/mhmA826Dp+
cqpJeoX54NdL5eMPjyA2LFmwtXqyKu63DWMDZ2fuiUbTQLwfYIN7+op/DS1S
MB9sWLasyHnFyTLMBxvYoUZRunvbMB9s0M69/fnShg7MBxu4K4N39alVYT5G
+uuMa/DuW2mYDzZcveZWr9gVgvlgQ/rhBI3SE7z9X/x6qXz84dE20h/zrp4/
udGRul/qYsP14WW+kjWB+LyDDSGzqiLXZKVgPtgw9baYYX5xGeZDF+ZeuXjF
wKmN8z8UxnQU
"]]}}, {}, {}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox["pr", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10.}, {-1.0000345965771391`, 1.0000125074031354`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.767840920717401*^9, 3.7678409495484056`*^9}, {
3.767840982996903*^9, 3.767840999239007*^9}, 3.767841061383613*^9,
3.7678410980091476`*^9, 3.767841130477839*^9, {3.767841187575012*^9,
3.767841204123508*^9}, 3.767841235557798*^9, 3.767841404787808*^9,
3.767842104704732*^9},ExpressionUUID->"be502814-1bb5-488d-ad2d-\
1e0e4023a7f0"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.006944444444444445],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxN2mVUVc/7AHoaSUkpaZDuVGKGFBWRVgQUAVER7EAUTBBRkVI6pbtDYoYG
pUEEJKXzEAqIxP3ete79nf95s9fzbq/Pmb33U4KON80vk5GQkMySk5D8v9eO
he+GFkqmMD3wLXckWyy4vPeiaCvoGKyaXet6eCAJ9J4PM7nbKQwzA8vWv/aV
AwNSbwlZRA9/unoIZUl1AR1RxTern9YAu4vopZixScD06Ezbk8rnaFLxBi8D
yQqwWF3xu0qxjgRQ37WIyEngLqQd+EKfAdMvj3+gmegEdv8kcpklRDDnpeNH
vK6Ug0LmNr4XFBp4//2dMIOKz+CQEcOIkKspNo1iVblaEAd2C8a4affPYZL/
73f/dOIB979nsPmhhWCRwWhEcWZdUF7wGI7+NFKvezYJ7br/cLV4JIzF+Cvk
aI2+oLuJgl8YNekx5cn3fDfvdyGf61zic5JraNopLG/4yBS6arRyRyoqEvDb
37uYvEtAMU1KPhZ310HK8vTUT8tJVBAUacnSygDDCEUqvlGdiOri2FvFlyKQ
hcBVwLNdht5le9S0e2jAkIfdU2k3PyPtXNMS3gRTKNVD7fx6LR4doJRgk9g5
B///+29dWdVLe3cGMuler5ueigI+VbN2ogVHIXVk2XR6ahJY5vOsyBIWhu/z
617oVHwB25d5DXgq6CCV8RdqK9wFrtgkFB3Hq8B+7dlZM/cpYCgcuDQnnYKq
bXF55RYBFCYytHyZWEcvE74WuB2cBHMVvgMzVoxYtng6l8+qE6SdT48dGhHB
YY+4lWMDysDNs2m7E8sa2HTudGa06GegMxhmrtVviq2mGcQiXyWC8zrupy9s
Ev2Hf8eZOQmcweuOTY8fikahsCWK5936R7E499Hxgr9JaD+P+q1HhxC2sgjI
eCRfgbQ5ZqxOaNLhDD+kc4m+G814FzyhOLuKUo7TZRIKp9Bc4aZSL0MuMOQN
1XVcJSDRXB+XVKvfoPvRoUnzrxMo1PO6JOMvRjhoXn2+42AnMvpINnhIUxRW
Xdk32xEpQ9etDcSbXDThwnL2wcPDiejC4kKJ50Ez2OnuIWK2noSerGf4Za4Q
/Ze9LcnSi0ygpy8WiXgXCU4qhzApDqjD+mVXPafTyUBng/dZ3hMhGLwTpFKR
WgGKVg1JPyBaSDVesf7Jphtcf3v2PAdhBYiEk1vkbk8BU5VY82dbhSiAxWUq
fIYAFLzM2gRbfiOyq8JJH30mwC9X9msfbh3E4JGyqmRYB5ifa/eciRTFcb0n
kGxVKZD5KOr2ZEwTH3tzWVj4UyLgUdEUaTc0w5qltm1bJukgp6n7Oess0d8u
Mbr01QkT/CXCeLydJRJpC8+dBDfV8amZUDmcmIyMlos7TKSEsOPQnSOMgpUo
6fkTygl9Wswx4T+7ldqNxn5PeXr4rSDgkO3qqzONHo49iXx/vQystyg9cf5J
QIEG94sVtf8ATc3yzxo6E8jtmcKRChIm2FK5rTrA1IGCyuq1rf6Jwqs3H/bI
nC1FwT9D3x2w04JT90Yrs00T0dvP5Ety3mbQOKBU+5hUAYrTuv42YpjoT3lN
FJKMnoZjT85+JymIAF6UG82/qdShtJr9nY6/ycCox9Xm9E9BKG35W+NxdCXo
uBtWptFKA/N/S6v5b3YDGMdTxS/833um+RrB1W8a9GuKJV0fq0QFbcPVLa0E
YD27ZjJR9Ac9CCkhP7X7C5DNX2W9cpIJD0doJye9awcJjwwNrtgfwe4iVypX
10rA6EvSnFsDWlg+41NaKX0ieO7MqBNebPY/72MmuuU6XUR/6c6MApH7p3FD
/FeGvMsRaCHBv9Y4Xg0f4qOzDTNPQUpDnZ3J7wTxCc07LXTcVahuHah/sKLB
n9rLZU2MelDP8Gw4jTcBiZy4m2/eMY186hR+VmRiUL7ep9JeQUDcZWd0tGQ2
wJTaoF1L+S8kVvPQzewjE2wv9BbxoW1Hfq+81kRqjkB+t4updwJLkO/b3rDy
c9rwpoqyiNbXBFQY7VS9t2j2P+8n8z9CmOqI/sjp279tutMwgZ//hIdkBGA5