-
Notifications
You must be signed in to change notification settings - Fork 4
/
ChaosEmptyAdSpoincare.nb
2419 lines (2378 loc) · 120 KB
/
ChaosEmptyAdSpoincare.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 122334, 2409]
NotebookOptionsPosition[ 120878, 2375]
NotebookOutlinePosition[ 121239, 2391]
CellTagsIndexPosition[ 121196, 2388]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<VariationalMethods`\>\"", "]"}]], "Input",
CellChangeTimes->{{3.767847376091784*^9,
3.7678473818475447`*^9}},ExpressionUUID->"063cc571-2c4f-4bce-b42a-\
d4e3b0d35198"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"EulerEquations", "[",
RowBox[{
RowBox[{
RowBox[{"a", "/",
RowBox[{"y", "[", "t", "]"}]}],
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "^", "2"}]}], "]"}]}], ",",
RowBox[{"y", "[", "t", "]"}], ",", "t"}], "]"}]], "Input",
CellChangeTimes->{{3.767847383625827*^9, 3.767847392349332*^9}, {
3.76784750121386*^9,
3.767847515678755*^9}},ExpressionUUID->"31590688-31f3-4e2a-a232-\
089beb94a9c5"],
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"a", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"], "+",
RowBox[{
RowBox[{"y", "[", "t", "]"}], " ",
RowBox[{
SuperscriptBox["y", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]}]], "\[Equal]", "0"}]], "Output",
CellChangeTimes->{
3.7678475161140213`*^9},ExpressionUUID->"4ebff3ef-9084-49d4-adf5-\
295c456385f5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"y1", ",", "y2", ",", "dy", ",", "py"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y1", "[",
RowBox[{"a1_", ",", "ys_"}], "]"}], ":=",
RowBox[{"NDSolveValue", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
FractionBox[
RowBox[{"a", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"], "+",
RowBox[{
RowBox[{"y", "[", "t", "]"}], " ",
RowBox[{
SuperscriptBox["y", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}], ")"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]}]], "\[Equal]", "0"}], "/.",
RowBox[{"{",
RowBox[{"a", "\[Rule]", "a1"}], "}"}]}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "ys"}], ",",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}],
",",
RowBox[{"y", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_"}], "]"}], ":=",
RowBox[{
RowBox[{"y1", "[",
RowBox[{"a", ",", "ys"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_"}], "]"}], ":=",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"y1", "[",
RowBox[{"a", ",", "ys"}], "]"}], ",", "t"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]", "t1"}], "}"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"py", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_"}], "]"}], ":=",
RowBox[{
RowBox[{"a", "/",
RowBox[{"y2", "[",
RowBox[{"t1", ",", "a", ",", "ys"}], "]"}]}], "*",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1", ",", "a", ",", "ys"}], "]"}], "/",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1", ",", "a", ",", "ys"}], "]"}], "^", "2"}]}],
"]"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "10"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "2", ",", "10"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "3", ",", "10"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "10"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "py"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "2", ",", "10"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "3", ",", "10"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "10"}], "]"}], ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "10"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"y", ",", "py"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"i", ",", "2", ",", "10"}], "]"}], ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "2", ",", "10"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"y", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"i", ",", "3", ",", "10"}], "]"}], ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "3", ",", "10"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "10"}], ",", "10", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"y", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.767847518498331*^9, 3.767847799491907*^9}, {
3.76784783084241*^9, 3.7678478663868*^9}, {3.767847917896153*^9,
3.767848056955784*^9}, {3.767848163359462*^9, 3.767848253116835*^9}, {
3.7678482865112467`*^9,
3.7678483016519012`*^9}},ExpressionUUID->"c1710f31-fe4d-4477-9000-\
30942e053f5f"],
Cell[CellGroupData[{
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011111111111111112`], AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw92XlcVGUXB/CRHUQYBoZ1GGZjd99CfeUeM3OljErLpVBBXDKyRA31FddS
c0tDKTGXzH0Lzd17Si3LJVPT9HVfyYVANNx5dc7za/7hM5+5853DzL3Pc87v
2vvmZeZ4GAyG2bUMhud/5eHiXdm5D/Z1qEv9nz+uOblbj93rNzavS4cOPn84
+c3f000rXXWpyfNHqZODP8x9YY2pLn1Z/PzhZKq62GyHoS65uUInz2s7wXWi
PFW8/k7uUto5+smZVPG6OHldbG79hgdSxWvi5O2meiPztqWKF+XkWB978I7l
qeIZnLxl6J2A0CLlXXPwvHOjJ4yYqLyDDg722z+r7EPllTp4sYdf5/59lFfs
4Kq+Jb9WvKq8QgfvzjYnfZqO+hx8ICRldN16qM/BK7J/PH82BvU5eHrbO4MX
BKA+B+ePedhiwIMUVZ+Dm1/o0K9NWYqqz86mriNrJZ1MUfXZOe181/qWn1JU
fXbuePVnT+vmFFWfnS+FGxbU+0Z5hXa2l3QM6TxHef3tHFrP8d/h45XXxc5H
fJs9WT9UeU3sPH5fj5XVWcqLsvPxzOKSjK6oz86X7zjvbdRQn403pfc84GqA
+mw803Wo1bdW1Gfj3OtN+zYPQn02bmcd1eOPJ8mqPhuvKt1ME24nq/psXHEl
sRGdTVb12Xh0yosdAg8lq/psHHtm8ZLrO5NVfTZebQ7pfXSN8gw2vlkyee7B
BcnkLudgHI/8Ob7/ic/U8cVxvPy19L//Ho3Pi+NhHbtkRA2BH8e5N6pLMnvD
i+OCseaarzLgWdn7pWUz7rWGZ+XatY4Nerc+vGevN7y38ZQVnpW/mzF9fHYw
PCtvedThUU1NkvJiuTKwpuWaiiTlxfIvyzZmDbyYpLxYHjf9s2kvHE1SXix/
6n31dPieJOXF8qF3W7zvuwmehQO/aJjjvwyehfP3Fp+3FMGzcJPtg5+0+QSe
hScP3Hdu5Eh4Fq49/fbSHwbCi+GSh68NsfSEF8Np1ZN7TukCL4b3T315pl86
vBgOOJ6X/GUDeDGc3cunc7odXjTvGtzIfM8EL5oTclut3O0FL5q1HbOTvvon
UXnRfIH3bppalqi8aF5dOTlv+ulE5UVx68A1BUsPJiovikelJd0/uDtReVF8
LDU4IGAjvCielDHnaI+l8KL4ymmvYfoX8CJ5UMTvxrRP4UXyaxXjDuwtgBfJ
SXm7fsoZAi+Sx33/UnxMFrxIvvT0jv/VzER1PUTw1jk75+1pl0hurjiCux1Z
W/l9GrwIvmW50VJPhRfB426uKjpjhRfBY46nJwWb4IVztwb+od294YWzIbew
YNP9BOWFc9kXdccn3kpQXji3Hf1txobzCcoL58XDiwyvHktQnplHDSvd7flz
gvLMrJf/sPrwdnhmzj33+c316+CZefsejyXLl8Azc9ag+3c2FyWo7y+MJ/fr
6/G/qfDC+OTEZnfDx8IL4yu/Dr418CN4Yby4lWfw8Vx4YVy2//HYN3vBC+VH
jXv2K+8KL5S9b9rPLmwHL5TnV78ektsSXijHPK10tm8AL5T/E1edprngmXjM
692HvRoFz8Rbkp4+GBEEz8TLxh66vdUTnomHdFzwkelBvPJM3Lhds/UTy+OV
F8ILd725N/hKvPJC+G7q2hOlp+KVF8LmnLP+Q3+LV14I19aGjmu/D14IH9xy
KuuFHfCMfPGXIQdoIzwjj2gz6Eq/5fCM/P7sysOLSuAZecCK2uuq58Az8rl9
y74ZMDWe5rvfH8wJsbP/qCqMp8bu44P53riCfsUj8HlBPEG7/sHb78MP4vy5
TW1Nc+AF8f5uRXOSe8Grw0XzzLdbvA6vDl94eeYrOZ3gBXLmye9OrW4DL5AD
Lxk21GkBL5A7V+6/M7UhvNocdMm5x5kErzZfNlS1+TMOXgDnHTk3c0UEvACe
dfmNQ3OD4QXwe1smRZf4wvPnKdP7zvuhxqU8f/6P71f9PO67lOfHN98qXvhu
hUt5ftxn8/jcU2Uu5fnx0Y7Nz+ZddCnPl3snd7I6T8Pz5T2N/TpWHYXnw4n/
DBp14QA8HzZOjT52Yy88Hx7gNXCIaTc8b75y7o3c7lvgebPf4ilnt22A58Ux
j3rearEKnhc3/n7f+pNL4T17/k2ftnNK4Hny0em5P743D54nD261on32bHge
vMw++/bH0+B5cGl6w8NrJ8Hz4CUHG3gaCuHV4vc6/b7sgwJ4tThyUtnhmmHw
DHxk0YmitXnwDFycOclcMAiegSl3UN+cHBc1dL+/Rp/nOWtuXpaLBriPf6qf
ODzrx/k98XlPdGvDzz0udnPRfrf/WK+Ylj6oQya8x3rpOD3otwx4j/R32m/1
yu8I76Fetq59Vst28B7oo9aFNYtrA+++/tfHXYqcreHd16tSFxS1bwGvWu83
OKXDtGbw/tHTjLN3ljeCd09POHXC68P68O7qbfPzGplT4d3VE9t1yvwzEV6V
fn7KseE7XPDu6A1Sy9futsOr1F/Muu19yQqvQu/z1ozP4i3wKvSI65WvTIly
UZb7/eX66FFfvl0nwkVH3Mff0ufUK9i6MQyfd1MfGVw9fLjJRbPc/l86V139
uqcRXpl++frE1n2C4F3TN6zLf/uTQHhXdL3l1seHAuBd1s1nVzRo5g/vot57
buDDnb7wLuhVLxr75fi4iN3vP6OXvtNuaH1vFxW6jz+lp9ZZlBLphc87oW/T
8uc6PF1kc/vHdP23kaUZHvCO6K6WO6cV18L7f9FHtPrO5vPsucF9/B59+Yz6
+XMMeH2b3mtT9rQ2z54b3M9X6ukhC7ONhn/PP/V49ty9ga/U/n3d/XybhvfL
ArpHg8/y+dq/ny/1aahPjj+mof5C+f80/H+L5P/X8P9fkO9Hw/ejvj8N358c
f1HD9yv+ZQ3fv/p9NPw+H8jvp+H3U7+vht9XvL80/P7i3dRwfqjzR8P5I165
hvNLnX8azj85vkLD+Sl+pYbzV53fGs7vNDn/NZz/6vrQcH2Id1fD9SPePS1R
XV/q+tNw/YlXreH6VNevhutXvPvaDXV9i/dAw/Wv1gcN64N4jzSsH2p90bC+
iPdYw/oj3hMN65NavzSsX+LVaFjf1IlHWP/keANhfRTfQFg/m8r6SlhfF8j6
S1h/1fpMWJ/F8yCs3+J5ENZ38TwJ6794noT9Qe0fhP1DvGfP1f4inhdZ1P4j
njdhfxLPm7B/qf2NsL+J50PY/8TzIeyP4vkS9k/xfAn7q3h+hP1XPD/C/iye
H91S+7d4/oT9XTx/wv4vXgChPxAvgNA/iBdA6C/Eq03oP8SrTcGqPxEvkNC/
iBdI6G/ECyT0P+LVIfRH4tWheap/Ei+I0F+JF0Tov8QLIvRn4gUT+jfxggn9
nXhGQv8nxxtpoOoPxTcS+keZb4yE/vKw9J+E/lO8EEJ/Kl4IoX8VL4TQ34oX
Quh/xQuhr1V/LJ6J0D+LZyL01+KZCP23eCZCfy6eidC/ixdK6O/FCyX0/+KF
EuYD8UIJ84N4oYT5QrwwwvwhXhhhPhEvjK6q+UW8MMJ8I14YYf4Rz0yYj8Qz
E+Yn8cw0QM1X4pmJ1fwlnpkwn4kXTpjfxAsnzHfihRPmP/HCCfOheOGE+VG8
CMJ8KV4EjVfzp3gRdFvNp+JFUHc1v4oXQZhvxYskzL/iRRLmY/EiCfOznL+R
lKnma+kvIwnzt3hRhPlcvCjC/C5eFB1X8714UTRazf/iRRHyAfGiaZXKD8SL
JuQL4kUT8gfxoilR5RPiRRPyC/FiCPmGeDGE/EO8GEI+Il4MtVD5iXgxhHxF
PAshfxHPQp+ofEY8CzVV+Y14FkK+I56FkP+IF0vIh8SLJeRH4sUS8iXxYulX
lT+JF0vIp8SzEvIr8axUqvIt8ayE/Es8KyEfE+/Z6yo/Ey+OkK+JF0fI38SL
o3yVz4kXRytUfideHCHfE89GyP9UPkjIB8W3kVXlh+7zt4uNxqh8UeYZGyF/
dHOFNkI+qfJLQn7p9kptNEDlm3I92GiWyj+lXbMR8lGpz07IT1W+SshXpT47
TVD5q9RnJ+SzUp+dkN9KfXZCvqvyX0L+K/XZCfmw1GenFio/lvrshHxZ6nMQ
8meVTxPyaanPQTNUfi31OQj5tvxeDjqk8m+pz0HIx1V+TsjPpT4HIV+X+hxk
VPm727vmoPkqn5f6nIT8XuX7hHxf6nPSDpX/S31OWq/uD0h9TspQ9w+kPifh
/oK6/0C4/yD1Ocmo7k9IfU7qpu5fSH1Oekvd35D6XIT7H/8HeI0SZw==
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[1, 0, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw92XlcVGUXB/CRHUQYBoZ1GGZjd99CfeUeM3OljErLpVBBXDKyRA31FddS
c0tDKTGXzH0Lzd17Si3LJVPT9HVfyYVANNx5dc7za/7hM5+5853DzL3Pc87v
2vvmZeZ4GAyG2bUMhud/5eHiXdm5D/Z1qEv9nz+uOblbj93rNzavS4cOPn84
+c3f000rXXWpyfNHqZODP8x9YY2pLn1Z/PzhZKq62GyHoS65uUInz2s7wXWi
PFW8/k7uUto5+smZVPG6OHldbG79hgdSxWvi5O2meiPztqWKF+XkWB978I7l
qeIZnLxl6J2A0CLlXXPwvHOjJ4yYqLyDDg722z+r7EPllTp4sYdf5/59lFfs
4Kq+Jb9WvKq8QgfvzjYnfZqO+hx8ICRldN16qM/BK7J/PH82BvU5eHrbO4MX
BKA+B+ePedhiwIMUVZ+Dm1/o0K9NWYqqz86mriNrJZ1MUfXZOe181/qWn1JU
fXbuePVnT+vmFFWfnS+FGxbU+0Z5hXa2l3QM6TxHef3tHFrP8d/h45XXxc5H
fJs9WT9UeU3sPH5fj5XVWcqLsvPxzOKSjK6oz86X7zjvbdRQn403pfc84GqA
+mw803Wo1bdW1Gfj3OtN+zYPQn02bmcd1eOPJ8mqPhuvKt1ME24nq/psXHEl
sRGdTVb12Xh0yosdAg8lq/psHHtm8ZLrO5NVfTZebQ7pfXSN8gw2vlkyee7B
BcnkLudgHI/8Ob7/ic/U8cVxvPy19L//Ho3Pi+NhHbtkRA2BH8e5N6pLMnvD
i+OCseaarzLgWdn7pWUz7rWGZ+XatY4Nerc+vGevN7y38ZQVnpW/mzF9fHYw
PCtvedThUU1NkvJiuTKwpuWaiiTlxfIvyzZmDbyYpLxYHjf9s2kvHE1SXix/
6n31dPieJOXF8qF3W7zvuwmehQO/aJjjvwyehfP3Fp+3FMGzcJPtg5+0+QSe
hScP3Hdu5Eh4Fq49/fbSHwbCi+GSh68NsfSEF8Np1ZN7TukCL4b3T315pl86
vBgOOJ6X/GUDeDGc3cunc7odXjTvGtzIfM8EL5oTclut3O0FL5q1HbOTvvon
UXnRfIH3bppalqi8aF5dOTlv+ulE5UVx68A1BUsPJiovikelJd0/uDtReVF8
LDU4IGAjvCielDHnaI+l8KL4ymmvYfoX8CJ5UMTvxrRP4UXyaxXjDuwtgBfJ
SXm7fsoZAi+Sx33/UnxMFrxIvvT0jv/VzER1PUTw1jk75+1pl0hurjiCux1Z
W/l9GrwIvmW50VJPhRfB426uKjpjhRfBY46nJwWb4IVztwb+od294YWzIbew
YNP9BOWFc9kXdccn3kpQXji3Hf1txobzCcoL58XDiwyvHktQnplHDSvd7flz
gvLMrJf/sPrwdnhmzj33+c316+CZefsejyXLl8Azc9ag+3c2FyWo7y+MJ/fr
6/G/qfDC+OTEZnfDx8IL4yu/Dr418CN4Yby4lWfw8Vx4YVy2//HYN3vBC+VH
jXv2K+8KL5S9b9rPLmwHL5TnV78ektsSXijHPK10tm8AL5T/E1edprngmXjM
692HvRoFz8Rbkp4+GBEEz8TLxh66vdUTnomHdFzwkelBvPJM3Lhds/UTy+OV
F8ILd725N/hKvPJC+G7q2hOlp+KVF8LmnLP+Q3+LV14I19aGjmu/D14IH9xy
KuuFHfCMfPGXIQdoIzwjj2gz6Eq/5fCM/P7sysOLSuAZecCK2uuq58Az8rl9
y74ZMDWe5rvfH8wJsbP/qCqMp8bu44P53riCfsUj8HlBPEG7/sHb78MP4vy5
TW1Nc+AF8f5uRXOSe8Grw0XzzLdbvA6vDl94eeYrOZ3gBXLmye9OrW4DL5AD
Lxk21GkBL5A7V+6/M7UhvNocdMm5x5kErzZfNlS1+TMOXgDnHTk3c0UEvACe
dfmNQ3OD4QXwe1smRZf4wvPnKdP7zvuhxqU8f/6P71f9PO67lOfHN98qXvhu
hUt5ftxn8/jcU2Uu5fnx0Y7Nz+ZddCnPl3snd7I6T8Pz5T2N/TpWHYXnw4n/
DBp14QA8HzZOjT52Yy88Hx7gNXCIaTc8b75y7o3c7lvgebPf4ilnt22A58Ux
j3rearEKnhc3/n7f+pNL4T17/k2ftnNK4Hny0em5P743D54nD261on32bHge
vMw++/bH0+B5cGl6w8NrJ8Hz4CUHG3gaCuHV4vc6/b7sgwJ4tThyUtnhmmHw
DHxk0YmitXnwDFycOclcMAiegSl3UN+cHBc1dL+/Rp/nOWtuXpaLBriPf6qf
ODzrx/k98XlPdGvDzz0udnPRfrf/WK+Ylj6oQya8x3rpOD3otwx4j/R32m/1
yu8I76Fetq59Vst28B7oo9aFNYtrA+++/tfHXYqcreHd16tSFxS1bwGvWu83
OKXDtGbw/tHTjLN3ljeCd09POHXC68P68O7qbfPzGplT4d3VE9t1yvwzEV6V
fn7KseE7XPDu6A1Sy9futsOr1F/Muu19yQqvQu/z1ozP4i3wKvSI65WvTIly
UZb7/eX66FFfvl0nwkVH3Mff0ufUK9i6MQyfd1MfGVw9fLjJRbPc/l86V139
uqcRXpl++frE1n2C4F3TN6zLf/uTQHhXdL3l1seHAuBd1s1nVzRo5g/vot57
buDDnb7wLuhVLxr75fi4iN3vP6OXvtNuaH1vFxW6jz+lp9ZZlBLphc87oW/T
8uc6PF1kc/vHdP23kaUZHvCO6K6WO6cV18L7f9FHtPrO5vPsucF9/B59+Yz6
+XMMeH2b3mtT9rQ2z54b3M9X6ukhC7ONhn/PP/V49ty9ga/U/n3d/XybhvfL
ArpHg8/y+dq/ny/1aahPjj+mof5C+f80/H+L5P/X8P9fkO9Hw/ejvj8N358c
f1HD9yv+ZQ3fv/p9NPw+H8jvp+H3U7+vht9XvL80/P7i3dRwfqjzR8P5I165
hvNLnX8azj85vkLD+Sl+pYbzV53fGs7vNDn/NZz/6vrQcH2Id1fD9SPePS1R
XV/q+tNw/YlXreH6VNevhutXvPvaDXV9i/dAw/Wv1gcN64N4jzSsH2p90bC+
iPdYw/oj3hMN65NavzSsX+LVaFjf1IlHWP/keANhfRTfQFg/m8r6SlhfF8j6
S1h/1fpMWJ/F8yCs3+J5ENZ38TwJ6794noT9Qe0fhP1DvGfP1f4inhdZ1P4j
njdhfxLPm7B/qf2NsL+J50PY/8TzIeyP4vkS9k/xfAn7q3h+hP1XPD/C/iye
H91S+7d4/oT9XTx/wv4vXgChPxAvgNA/iBdA6C/Eq03oP8SrTcGqPxEvkNC/
iBdI6G/ECyT0P+LVIfRH4tWheap/Ei+I0F+JF0Tov8QLIvRn4gUT+jfxggn9
nXhGQv8nxxtpoOoPxTcS+keZb4yE/vKw9J+E/lO8EEJ/Kl4IoX8VL4TQ34oX
Quh/xQuhr1V/LJ6J0D+LZyL01+KZCP23eCZCfy6eidC/ixdK6O/FCyX0/+KF
EuYD8UIJ84N4oYT5QrwwwvwhXhhhPhEvjK6q+UW8MMJ8I14YYf4Rz0yYj8Qz
E+Yn8cw0QM1X4pmJ1fwlnpkwn4kXTpjfxAsnzHfihRPmP/HCCfOheOGE+VG8
CMJ8KV4EjVfzp3gRdFvNp+JFUHc1v4oXQZhvxYskzL/iRRLmY/EiCfOznL+R
lKnma+kvIwnzt3hRhPlcvCjC/C5eFB1X8714UTRazf/iRRHyAfGiaZXKD8SL
JuQL4kUT8gfxoilR5RPiRRPyC/FiCPmGeDGE/EO8GEI+Il4MtVD5iXgxhHxF
PAshfxHPQp+ofEY8CzVV+Y14FkK+I56FkP+IF0vIh8SLJeRH4sUS8iXxYulX
lT+JF0vIp8SzEvIr8axUqvIt8ayE/Es8KyEfE+/Z6yo/Ey+OkK+JF0fI38SL
o3yVz4kXRytUfideHCHfE89GyP9UPkjIB8W3kVXlh+7zt4uNxqh8UeYZGyF/
dHOFNkI+qfJLQn7p9kptNEDlm3I92GiWyj+lXbMR8lGpz07IT1W+SshXpT47
TVD5q9RnJ+SzUp+dkN9KfXZCvqvyX0L+K/XZCfmw1GenFio/lvrshHxZ6nMQ
8meVTxPyaanPQTNUfi31OQj5tvxeDjqk8m+pz0HIx1V+TsjPpT4HIV+X+hxk
VPm727vmoPkqn5f6nIT8XuX7hHxf6nPSDpX/S31OWq/uD0h9TspQ9w+kPifh
/oK6/0C4/yD1Ocmo7k9IfU7qpu5fSH1Oekvd35D6XIT7H/8HeI0SZw==
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[0, 1, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw92XlcVGUXB/CRHUQYBoZ1GGZjd99CfeUeM3OljErLpVBBXDKyRA31FddS
c0tDKTGXzH0Lzd17Si3LJVPT9HVfyYVANNx5dc7za/7hM5+5853DzL3Pc87v
2vvmZeZ4GAyG2bUMhud/5eHiXdm5D/Z1qEv9nz+uOblbj93rNzavS4cOPn84
+c3f000rXXWpyfNHqZODP8x9YY2pLn1Z/PzhZKq62GyHoS65uUInz2s7wXWi
PFW8/k7uUto5+smZVPG6OHldbG79hgdSxWvi5O2meiPztqWKF+XkWB978I7l
qeIZnLxl6J2A0CLlXXPwvHOjJ4yYqLyDDg722z+r7EPllTp4sYdf5/59lFfs
4Kq+Jb9WvKq8QgfvzjYnfZqO+hx8ICRldN16qM/BK7J/PH82BvU5eHrbO4MX
BKA+B+ePedhiwIMUVZ+Dm1/o0K9NWYqqz86mriNrJZ1MUfXZOe181/qWn1JU
fXbuePVnT+vmFFWfnS+FGxbU+0Z5hXa2l3QM6TxHef3tHFrP8d/h45XXxc5H
fJs9WT9UeU3sPH5fj5XVWcqLsvPxzOKSjK6oz86X7zjvbdRQn403pfc84GqA
+mw803Wo1bdW1Gfj3OtN+zYPQn02bmcd1eOPJ8mqPhuvKt1ME24nq/psXHEl
sRGdTVb12Xh0yosdAg8lq/psHHtm8ZLrO5NVfTZebQ7pfXSN8gw2vlkyee7B
BcnkLudgHI/8Ob7/ic/U8cVxvPy19L//Ho3Pi+NhHbtkRA2BH8e5N6pLMnvD
i+OCseaarzLgWdn7pWUz7rWGZ+XatY4Nerc+vGevN7y38ZQVnpW/mzF9fHYw
PCtvedThUU1NkvJiuTKwpuWaiiTlxfIvyzZmDbyYpLxYHjf9s2kvHE1SXix/
6n31dPieJOXF8qF3W7zvuwmehQO/aJjjvwyehfP3Fp+3FMGzcJPtg5+0+QSe
hScP3Hdu5Eh4Fq49/fbSHwbCi+GSh68NsfSEF8Np1ZN7TukCL4b3T315pl86
vBgOOJ6X/GUDeDGc3cunc7odXjTvGtzIfM8EL5oTclut3O0FL5q1HbOTvvon
UXnRfIH3bppalqi8aF5dOTlv+ulE5UVx68A1BUsPJiovikelJd0/uDtReVF8
LDU4IGAjvCielDHnaI+l8KL4ymmvYfoX8CJ5UMTvxrRP4UXyaxXjDuwtgBfJ
SXm7fsoZAi+Sx33/UnxMFrxIvvT0jv/VzER1PUTw1jk75+1pl0hurjiCux1Z
W/l9GrwIvmW50VJPhRfB426uKjpjhRfBY46nJwWb4IVztwb+od294YWzIbew
YNP9BOWFc9kXdccn3kpQXji3Hf1txobzCcoL58XDiwyvHktQnplHDSvd7flz
gvLMrJf/sPrwdnhmzj33+c316+CZefsejyXLl8Azc9ag+3c2FyWo7y+MJ/fr
6/G/qfDC+OTEZnfDx8IL4yu/Dr418CN4Yby4lWfw8Vx4YVy2//HYN3vBC+VH
jXv2K+8KL5S9b9rPLmwHL5TnV78ektsSXijHPK10tm8AL5T/E1edprngmXjM
692HvRoFz8Rbkp4+GBEEz8TLxh66vdUTnomHdFzwkelBvPJM3Lhds/UTy+OV
F8ILd725N/hKvPJC+G7q2hOlp+KVF8LmnLP+Q3+LV14I19aGjmu/D14IH9xy
KuuFHfCMfPGXIQdoIzwjj2gz6Eq/5fCM/P7sysOLSuAZecCK2uuq58Az8rl9
y74ZMDWe5rvfH8wJsbP/qCqMp8bu44P53riCfsUj8HlBPEG7/sHb78MP4vy5
TW1Nc+AF8f5uRXOSe8Grw0XzzLdbvA6vDl94eeYrOZ3gBXLmye9OrW4DL5AD
Lxk21GkBL5A7V+6/M7UhvNocdMm5x5kErzZfNlS1+TMOXgDnHTk3c0UEvACe
dfmNQ3OD4QXwe1smRZf4wvPnKdP7zvuhxqU8f/6P71f9PO67lOfHN98qXvhu
hUt5ftxn8/jcU2Uu5fnx0Y7Nz+ZddCnPl3snd7I6T8Pz5T2N/TpWHYXnw4n/
DBp14QA8HzZOjT52Yy88Hx7gNXCIaTc8b75y7o3c7lvgebPf4ilnt22A58Ux
j3rearEKnhc3/n7f+pNL4T17/k2ftnNK4Hny0em5P743D54nD261on32bHge
vMw++/bH0+B5cGl6w8NrJ8Hz4CUHG3gaCuHV4vc6/b7sgwJ4tThyUtnhmmHw
DHxk0YmitXnwDFycOclcMAiegSl3UN+cHBc1dL+/Rp/nOWtuXpaLBriPf6qf
ODzrx/k98XlPdGvDzz0udnPRfrf/WK+Ylj6oQya8x3rpOD3otwx4j/R32m/1
yu8I76Fetq59Vst28B7oo9aFNYtrA+++/tfHXYqcreHd16tSFxS1bwGvWu83
OKXDtGbw/tHTjLN3ljeCd09POHXC68P68O7qbfPzGplT4d3VE9t1yvwzEV6V
fn7KseE7XPDu6A1Sy9futsOr1F/Muu19yQqvQu/z1ozP4i3wKvSI65WvTIly
UZb7/eX66FFfvl0nwkVH3Mff0ufUK9i6MQyfd1MfGVw9fLjJRbPc/l86V139
uqcRXpl++frE1n2C4F3TN6zLf/uTQHhXdL3l1seHAuBd1s1nVzRo5g/vot57
buDDnb7wLuhVLxr75fi4iN3vP6OXvtNuaH1vFxW6jz+lp9ZZlBLphc87oW/T
8uc6PF1kc/vHdP23kaUZHvCO6K6WO6cV18L7f9FHtPrO5vPsucF9/B59+Yz6
+XMMeH2b3mtT9rQ2z54b3M9X6ukhC7ONhn/PP/V49ty9ga/U/n3d/XybhvfL
ArpHg8/y+dq/ny/1aahPjj+mof5C+f80/H+L5P/X8P9fkO9Hw/ejvj8N358c
f1HD9yv+ZQ3fv/p9NPw+H8jvp+H3U7+vht9XvL80/P7i3dRwfqjzR8P5I165
hvNLnX8azj85vkLD+Sl+pYbzV53fGs7vNDn/NZz/6vrQcH2Id1fD9SPePS1R
XV/q+tNw/YlXreH6VNevhutXvPvaDXV9i/dAw/Wv1gcN64N4jzSsH2p90bC+
iPdYw/oj3hMN65NavzSsX+LVaFjf1IlHWP/keANhfRTfQFg/m8r6SlhfF8j6
S1h/1fpMWJ/F8yCs3+J5ENZ38TwJ6794noT9Qe0fhP1DvGfP1f4inhdZ1P4j
njdhfxLPm7B/qf2NsL+J50PY/8TzIeyP4vkS9k/xfAn7q3h+hP1XPD/C/iye
H91S+7d4/oT9XTx/wv4vXgChPxAvgNA/iBdA6C/Eq03oP8SrTcGqPxEvkNC/
iBdI6G/ECyT0P+LVIfRH4tWheap/Ei+I0F+JF0Tov8QLIvRn4gUT+jfxggn9
nXhGQv8nxxtpoOoPxTcS+keZb4yE/vKw9J+E/lO8EEJ/Kl4IoX8VL4TQ34oX
Quh/xQuhr1V/LJ6J0D+LZyL01+KZCP23eCZCfy6eidC/ixdK6O/FCyX0/+KF
EuYD8UIJ84N4oYT5QrwwwvwhXhhhPhEvjK6q+UW8MMJ8I14YYf4Rz0yYj8Qz
E+Yn8cw0QM1X4pmJ1fwlnpkwn4kXTpjfxAsnzHfihRPmP/HCCfOheOGE+VG8
CMJ8KV4EjVfzp3gRdFvNp+JFUHc1v4oXQZhvxYskzL/iRRLmY/EiCfOznL+R
lKnma+kvIwnzt3hRhPlcvCjC/C5eFB1X8714UTRazf/iRRHyAfGiaZXKD8SL
JuQL4kUT8gfxoilR5RPiRRPyC/FiCPmGeDGE/EO8GEI+Il4MtVD5iXgxhHxF
PAshfxHPQp+ofEY8CzVV+Y14FkK+I56FkP+IF0vIh8SLJeRH4sUS8iXxYulX
lT+JF0vIp8SzEvIr8axUqvIt8ayE/Es8KyEfE+/Z6yo/Ey+OkK+JF0fI38SL
o3yVz4kXRytUfideHCHfE89GyP9UPkjIB8W3kVXlh+7zt4uNxqh8UeYZGyF/
dHOFNkI+qfJLQn7p9kptNEDlm3I92GiWyj+lXbMR8lGpz07IT1W+SshXpT47
TVD5q9RnJ+SzUp+dkN9KfXZCvqvyX0L+K/XZCfmw1GenFio/lvrshHxZ6nMQ
8meVTxPyaanPQTNUfi31OQj5tvxeDjqk8m+pz0HIx1V+TsjPpT4HIV+X+hxk
VPm727vmoPkqn5f6nIT8XuX7hHxf6nPSDpX/S31OWq/uD0h9TspQ9w+kPifh
/oK6/0C4/yD1Ocmo7k9IfU7qpu5fSH1Oekvd35D6XIT7H/8HeI0SZw==
"]]}}, {}, {}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox["y", TraditionalForm]},
AxesOrigin->{0, 9.792893228823123},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-10., 10.}, {10., 14.14213542353752}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.767847725107185*^9, 3.767847800794565*^9},
3.767847839142544*^9, {3.767848017754282*^9, 3.767848059149324*^9},
3.767848311746295*^9},ExpressionUUID->"92483cd1-6a8a-404a-8c30-\
8f85d272379e"],
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011111111111111112`], AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxF2Xl4TPcaB/DJvu+ZJJN1Flu0oUVbJZw3llY0WhctRRMSgtpS170ordAg
LdKIrdHIJrLveonSnretKkq5tlLaUJWIpZYgEdSteb/nufOPJ48zn/POzDm/
3/t+jylx7qiptjqdbp2NTvf0X3l14lXeypCg4Ho1+emrycLffrH/tQWe9eqR
w09fFq6PMl5VbevV3k9fOyy8fenIu7fv16lbsp++LHzgdh/F41qdauVSLXzz
0rI8n8Y68ZItnFD+Tctfx+vEi7PwlLmj75zcXydebws/Tpyxdv2X8AwW7hR7
N6NfNTydhXuV3Tt0sABek5nbtiToYzbCO2zmlGltMfnp8HaYud/7Yzo1L9bq
M7PThMZP9XO1+swcU3Ns7DOJWn1mbi7p+Ua3N7X6zHzl4J1h7sO0+swctTI2
6Od+Wn1mXnnzzcz0KK0+My9KCE8zGrX6TOzqt2Z/rq9Wn4ljTs7obueg1Wfi
8bWJy0e01aI+E/faoyv4oKUW9Zl4b2PFuPXnalGfiZ1sKxZnHKlFfSbukrfm
/By1FvWZ2O7V4Nf71MEzmDjCy2vbb4XwdCZeE9apevYGeE1Gjm72HHRxBbzD
Rh6/bOnzLy+At8PI1Q4Rb/xrulafkZe7Zsze+LZWn5F/iUpKyB6u1WfkkkXd
21L7a/UZOdbmpFPcs1p9Rp6QXT+lI1Srz8jp8SEXV3to9Rl5d5tNge5RjWot
53AEL37pknvN+RqcP4K/vxxZZf6qBueL4GmHxkRO2FoDP4JzP/aMHPdBDbwI
Hv5W9zGGdzQvnP0v5I/Kjda8cD45weloU4jmhfPBkIv/vNNRDS+cH6qOV/ls
Nbxw3nl/1Ll/NFTDC+Nb/T+/U7SpGl4Yv3Ol9Nzu+dXwwvjVzF6DM0dpXhg3
1p063fU5zQvjynrvoakemhfKnZ4dMCD7ahW8UB7YY1TKvB+q4IXypvtzM9yK
quCF8rW9Va9MSa2CF8ov5DbELplYBS+EB5f8FDu6r+aF8LDUnR1X/DQvhP0/
2OUz4GYlvBA2+WQNfeNQJbwQPlC88PWI7ZXwgvnPM85NlUsr4QVzqG7P/ra3
K+EF872eP5c96a15wZwZ8mPsPg/NC+Yu9TcThzZXwDOw78ClO5ZzBTwDZx9Y
+3BxdgU8A3tcs3n83LwKeAaOdc9YXDC8Ap6Be7iURx8xa14Qhx1xdPqioxxe
EP+nd0zBm8fL4QXxFIfmE3Vl5fCCeLahasaB1HJ4Qey+f2rP7LHluB8CuVdO
R6ulR7lq5bIDOS4rOX26veYFsiHn72v/lzJ4gdy9umlOeG0ZvEDuvPn2zE9X
lMELYF/X6Izd48vgBfCr+Vl1OT3L4AVwpXJ8R197zQtgmxFn5689UwovgGce
TDu9pbIUnp6HHK3aOym1FJ6ef5zZ1aNxdCk8PSee2Fuj71oKT88TNu1da99R
Ak/PKzd7bKw4XILvz5+LYtIaXPNK4PnzrgteN0zvlcDz54T6+sjbg0rg+XP/
jGXTFvprnj9Xnt9WsOtyMTw/nnB29KnqncXw/DgpvNEmflUxPD++UHC02/dj
i+H58eCstFF/dC2G58fdF+Ss2dO2HZ4vf8FezcN/2A7Pl6PKo+ZnbdoOz5d/
mLF1WNbU7fB8mXMTFg/vsx2eL/fsONp5j63m+fC7ESVJfxwrgufDze2pcftz
i+D5cN7Fi3aTZxXB8+Hrc+LUL14ugufD8Tfu7vjGsQieNxcV1gekn9gGz5vf
/dUz1Dl/Gzxvnv7d6PaYWdvgefPkX7Y0vtB3GzxvDog95/CH3Tb1M+v7vXjn
vMOlcUcL1V7W4724Mm+OIWVLIc7nyVXTupa8PrUQvifnRh3edqVnITxPbuiz
I2lgRwE8D44d2zBg5L4CeB48iWNWh2cUwHPne0VDSsvGFsBz59/bY1tvGwvg
uXNi9oETbS358Ny46kDCl3vq8+G58d5+CwMGLs6H58qzW76bsHRwPjxXtj06
yDbVLR+eK3vMSHNfVpwHz4UzYxuOLX8hD54L27WOTnDclwvPmfOXx/zXfVQu
PGcecHxs382NW+E588h7Q+qLZ22F58SjuqTNiH6QA8+JkwaO3Pj2ihx4jry/
edOiJ9458Bx5UXzm9J45n8Nz5KnPF+652uVzeA7sbExp6FW3BZ4D/8KD6pz7
b4Fnz2tfGOYyZ182PHtOG7Gkz5QR2fDsedxv63ZdP/UZPDv2932lm0v8Z/Ds
eKg+vPOey5vh2bLhzupI+9mb4dmyY92c3ZdbN8GzZRf9sNmT398Ez4ZnhYbd
WajbBM+GB704zqXHyo3wdHylW1X6creN8HR8+pVVoxdmboCn48Ivx0T46Deo
z1nf/0Q92MO09fXs9ep06/F/qavnHdnYK2w9zvdYjb51reXr/Cz1gNV/pH54
JXfdPUsWvEfqnMaFOWeK18F7qK481yvq3ch18DrU0evjXqqsyIT3QG39ecOG
/KhMeO3qtZsvp2TFfwqvXW17tvmdkZMz4LWp5qEOtDRpLbz76rGrjZstU9fA
u6dO/GG8flDyanh31X5n44Makz+Bd1f93PP7or+SP4bXqubl2FwrSk6Hd0d9
kOn7xumpq+DdVquTX5m+ecpKeLfUsf2dbW4kroB3S10xgPTnJ6Wpk6zv/1Md
vPnk7BnxH6nHrMdfVxe9WJWQPWE5zndN7dbdFJ8ybpmaafVb1PVvd3ZpHZMK
74q6u+G18XGFH8JrUlf+dmBF2JYl8P5Qu51e/1vSuvfhXVLdOHh4ZPpCeBfV
9y69FLDgw3/Du6Cezk65+tb8+Spb339e/Tq6eM3xGfPUVOvxZ9Vv5zlfbI1P
wflOq0s8/U9+XDJLNVr9E+qnT2oz8zKnwzumBpWs7jJg0RS8/6A6blGF8u/J
k1Sd9fjv1Oei75/6Kmsc/n+36uY9PiEgcaSqs/5dpr6VGhwZnUja9ff/l3UD
L1Meyv8r8vduJV7er5D4ykfiKyznV5bJ+RXUp6A+HH9C2SX1K6ny+ZRi+XxK
vnx+5bR8fuWCfD/Kcfl+4F1Q8P3h+IvKSvl+4V9SIuT7V/D7KPh9lBT5/ZRs
+f3gXVHw+8JrUbbK7w/vmtJbrg941xVcP/D+VEbI9QXvloLrD8ffUibJ9Qn/
trJLrl8F17eC61vpK9e/Ui7XP7y7yla5P+DdVYbK/QPvnjJF7i9495Wf5P6D
16Z0l/sTXruC+xdeu9Iq9ze8B0q73P/wOhSsD/AeKmtl/YD3SJkr6wu8R8pH
sv7Ae6zEyPoE7y8F6xe8J8pPsr7B0xHWPxyvozOyPsLX0Q1ZP5U+sr7SUFlf
lRxZf2merL/wbAnrM7y//5b1G54thcn6Ds+Ohsn6D8+ODLI/wLMn7B/w7Cld
9hd49pQp+w88B/pV9id4DuQu+xc8R8L+Bs+Rlsj+B8+RDsr+CM+JkmX/hOdE
b8r+Cs+ZsP/Cc6Yhsj/Dc6Yi2b/huZC97O/wXGi97P/wXAn9ATxXQv8Az5Xm
Sn8Bz42+kv4DnhvVSn8Cz53Qv8Bzp0vS38Bzpzbpf+B5UJL0R/A86DXpn+B5
EvoreJ6UJ/0XPE+qlf4MnhdVSf8Gz4sapL+D50166f9wvDehP4TvTTOlf1Rk
vvn7b+kvlZ+k/6Ri6T/h+dAk6U/h+RD6V3g+VCD9LTwfapH+F54PzZT+GJ4v
oX+G50vor+H50iHpv+H5Ug/pz+H50k7p3+H5UaT09/D8CP0/PD/6XeYDeH6E
+QGeH02U+QKeP2H+gOdP0TKfwPOnyTK/wPOnBplv4PlTqcw/8PSE+Qient6R
+QmenpJkvoKnp0Myf8HT06syn8ELIMxv8ALITuY7eAFULfMfvADCfAgvgPQy
P8ILJMyX8AIpUuZPeIEUJPMpvEB6TeZXeIH0osy38ILIS+ZfeEGUIvMxvCCa
JvMzrt8g2iXztSL9ZRBh/oZnoGdkPodnIMzv8AyE+R6egT6T+R+egZAPwAum
zpIfwAsm5Avwgum+5A/wgilc8gl4wXRT8gt4IYR8A14IdZb8A14I6SUfgRdC
wyU/gRdCJPkKvFBC/gIvlFokn4EXShskv4EXSorkO/BCCfkPvDCqlnwIXhhd
kPwIXhgNk3wJXhjFS/4EL4yQT8ELJ+RX8MKpXfIteOGE/AteOCEfgxdOyM/g
RRDyNXgRlC/5G7wISpZ8Dl4E7ZP8Dl4EId+DZyTkfwryQfpE8kH4Rpoo+aFc
v3FGQr6oyDxjJOSP4qUa6bzkk7j+jZQm+aV4O4xUI/km7gcjIf8Ur8lIyEdR
n4mQn6I+EyFfRX0mcpD8FfWZCPks6jMR8lvUZyLku6jPRMh/UZ+JJko+jPpM
hPwY9ZkI+TLqM9NCyZ9Rn5mQT6M+M/WU/Br1memq5Nv4vczUIvk36jPTIMnH
UZ+ZXCQ/R31mQr6O+sw0V/J38ZrMdF/yedRnoeclv0d9FkK+j/os9Ejyf9Rn
oSR5PoD6LDRJnh+gPgvh+QLqsxCeP6A+C5XI8wnUZyE8v0B9FvpOnm+gvk6E
5x/K/wCu1zdT
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[1, 0, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJxF2Xl8jWcWB/Cbfd9zk9ysd7FFG1q0VcJ7YmlFozVoKZqQEFSRMWbK0BEm
NDNII7ZGIwtpYkkim+w8h6qilEG1yjSMNhHaWoKkoTUj53c/c//xycd7v++5
977v85zze02JiybMttXpdBttdLqn/8qrB3/orY0KCj6ikp++Wix8pPrYa+97
HlGnTz19WbgyynhT2R5RA5++qiz86crx9+8+PKy2Zz99Wfj43UGax63DqptL
tfDt66vyfJoPi5ds4YS9h9t+P3dYvDgLz1o08d6FY4fFG2jh3xLnbdjUAM9g
4R6x9zOGlMHTWXjAngcnTxTAazFzx/YEfcwWeKfMnDKnIyY/HV6VmYf8dVKP
1uXW+szsNK35I/0ia31mjtl/dvIzidb6zNxa3P+NPm9a6zPzjRP3xriPsdZn
5qi1sUHfDLHWZ+a1t9/MTI+y1mfmZQnhaUajtT4Tu/qtP5bra63PxDEX5vW1
c7DWZ+Kp5Ymrx3Uw6jPxgEZdwQdtjPpM3NS8b8qmy4z6TOxku295xmlGfSbu
lbf+ykLFqM/Edq8Gvz6oAp7BxBFeXru+3wlPZ+L1YT3KFmyG12Lk6FbPEdfW
wDtl5KmrVj7/8vvwqoxc5hDxxp/nWusz8mrXjAVb3rbWZ+TvopISssda6zNy
8bK+HalDrfUZOdbmglPcs9b6jDwtu3JWV6i1PiOnx4dcW+dhrc/I9R02BbrH
SnWXcyqCl7903X3/FYXzR/DnP0aWmg8qnC+C55ycFDlth4Ifwbn/8Iyc8oGC
F8Fj3+o7yfCO1Qtn/6v5E3KjrV44X5jmdKYlxOqF84mQa3+613UIXjg/Uo43
+dIheOFc83DC5T/UHYIXxneGfnKvcOsheGH8zo3dl+uXHIIXxq9mDhiZOcHq
hXFzxdcXez9n9cK4pNJ7dKqH1QvlHs8OG5Z98yC8UB7eb0LK4i8OwgvlrQ8X
ZbgVHoQXyreaSl+ZlXoQXii/kFsXu2L6QXghPLL4q9iJg61eCI9Jrem64Wf1
Qtj/g1qfYbeb4IWwySdr9Bsnm+CF8PGipa9HfNoEL5h/+da5pWRlE7xgDtU1
Hut4uwleMD/o/82eJwOtXjBnhnwZe9TD6gVzr8rbiaNbG+EZ2Hf4yqrV3AjP
wNnHNzxant0Iz8Aet2x+e25xIzwDx7pnLC8Y2wjPwP1c9kafNlu9IA477ehU
3dUAL4gPDIwpePNcA7wgnuXQer5iTwO8IF5gKJ13PLUBXhC7H5vdP3tyA+6H
QB6Q09Vu6degurnsQI7LSk6fa2/1AtmQU66Sv6uHF8h9y1oWhpfXwwvkntvu
zv9oTT28APZ1jc6on1oPL4Bfzc+qyOlfDy+AS7RzVYPtrV4A24y7tGTDt3Xw
Anj+ibSL20vq4Ol51JnSphmpdfD0/OX83h7NE+vg6TnxfNN+fe86eHqetrVp
g31XLTw9r93msWXfqVp8f/5cGJNW55pXC8+fa696/Wz6Yy08f06orIy8O6IW
nj8PzVg1Z6m/1fPnkiu7Cmp/rIHnx9MuTfy6rKYGnh8nhTfbxH9YA8+Prxac
6fP55Bp4fjwyK23CD71r4Plx3/dz1jd2HIDny9Xs1Tr2iwPwfDlqb9SSrK0H
4PnyF/N2jMmafQCeL3NuwvKxgw7A8+X+XWd6NtpaPR9+N6I46Yez1fB8uLUz
Ne5YbjU8H867ds1u5nvV8Hz4p4Vxqvrlang+HP/z/arDjtXwvLlwZ2VA+vkq
eN787r89Q53zq+B589zPJnbGvFcFz5tnfre9+YXBVfC8OSD2ssMPdlXq4+73
e3HN4lO7485UqgHdx3txSd5CQ8r2SpzPk0vn9C5+fXYlfE/OjTq160b/Snie
XDeoKml4VwU8D46dXDds/NEKeB48g2PWhWdUwHPnB4Wjdu+ZXAHPnf/TGdt+
11gBz50Ts4+f72grh+fGpccTGhory+G5cdOQpQHDl5fDc+UFbZ9NWzmyHJ4r
254ZYZvqVg7PlT3mpbmvKtoPz4UzY+vOrn5hPzwXtmufmOB4tAyeM+evjvmX
+4QyeM487NzkwduaS+E58/gHoyqL3iuF58QTeqXNi/61BJ4TJw0fv+XtNSXw
HPlY69ZlT7xL4DnysvjMuf1z9sFz5NnP72y82WsfPAd2NqbUDajYC8+Bv+MR
Fc5D98Kz5w0vjHFZeHQPPHtOG7di0Kxxe+DZ85TvN9b+9PVueHbs7/tKH5f4
3fDseLQ+vGfjj8XwbNlwb12k/YJieLbsWLGw/sf2Ini27KIfs2DmX4vg2fB7
oWH3luqK4NnwiBenuPRb+yk8Hd/oU5q+2u1TeDq++MqHE5dmFsLT8c6GSRE+
+kL1XPf7n6gT/Uw7Xs/epeZ2H/+7Wrf49JYBYbtwvt9U9J1bbYfyd6rj3f5j
9bcbuRsfWHbCe6wWNi/N+baoAN4jtfbygKh3IwvgdamJm+JeKtmXD+9X1f7N
5s35UfnwOtWt2y+nZMXnwetUHc+2vjN+Zi68DmUe7UArk3bAe6jO3mzeZpmd
A++Bmv7FVP2I5E/g3VdDLsUHNSdvh3dffeL5eeHvydnw2lVejs2twuSP4d1T
v2b6vnFx9jZ4d1VZ8itzt83aCu+OmjzU2ebnxC3w7qg1w0h/ZcZmNaP7/b+o
kdsuLJgXv0md7T7+J7XsxdKE7GlZON8t1aevKT5lykaV2e23qU1v93Rpn5QJ
74aqr3ttatzODHgtau33x9eEbV8P7wfV5+Km75M2/hPedeXGwWMj09PhXVN/
vP5SwPt/WwvvqrqYnXLzrSVpirvff0Udii5af27eapXaffwldWSx87X2+FSc
76Ja4el/4R/FK5Sx2z+vPnpSnpmXuRTeWRVUvK7XsGVL8P4TasqyfdpfZqYo
Xffxn6nnoh9+fTBrLv6/Xrl5T00ISJyhdN1/71FvpQZHRieOt15//391b+B7
tEfy/5r8Xa/Fy/s1El/7u/gay/m1VXJ+DfVpqA/Hn9dqpX4tVT6fViSfT8uX
z69dlM+vXZXvRzsn3w+8qxq+Pxx/TVsr3y/861qEfP8afh8Nv4+WIr+fli2/
H7wbGn5feG3aDvn94d3SBsr1Ae8nDdcPvF+0cXJ9wbuj4frD8Xe0GXJ9wr+r
1cr1q+H61nB9a4Pl+tf2yvUP7762Q+4PePe10XL/wHugzZL7C95D7Su5/+B1
aH3l/oTXqeH+hdeptcv9De9XrVPuf3hdGtYHeI+0DbJ+wHusLZL1Bd5j7e+y
/sD7TYuR9Qne7xrWL3hPtK9kfYOnI6x/OF5H38r6CF9HP8v6qQ2S9ZVGy/qq
5cj6S4tl/YVnS1if4f3vb1m/4dlSmKzv8OxojKz/8OzIIPsDPHvC/gHPntJl
f4FnT5my/8BzoH/L/gTPgdxl/4LnSNjf4DnSCtn/4DnSCdkf4TlRsuyf8Jzo
Tdlf4TkT9l94zjRK9md4zlQo+zc8F7KX/R2eC22S/R+eK6E/gOdK6B/gudIi
6S/gudFB6T/guVG59Cfw3An9Czx3ui79DTx36pD+B54HJUl/BM+DXpP+CZ4n
ob+C50l50n/B86Ry6c/geVGp9G/wvKhO+jt43qSX/g/HexP6Q/jeNF/6R03m
m//9Lf2l9pX0n1Qk/Sc8H5oh/Sk8H0L/Cs+HCqS/hedDbdL/wvOh+dIfw/Ml
9M/wfAn9NTxfOin9Nzxf6if9OTxfqpH+HZ4fRUp/D8+P0P/D86P/yHwAz48w
P8Dzo+kyX8DzJ8wf8PwpWuYTeP40U+YXeP5UJ/MNPH/aLfMPPD1hPoKnp3dk
foKnpySZr+Dp6aTMX/D09KrMZ/ACCPMbvACyk/kOXgCVyfwHL4AwH8ILIL3M
j/ACCfMlvECKlPkTXiAFyXwKL5Bek/kVXiC9KPMtvCDykvkXXhClyHwML4jm
yPyM6zeIamW+1qS/DCLM3/AM9IzM5/AMhPkdnoEw38Mz0Mcy/8MzEPIBeMHU
U/IDeMGEfAFeMD2U/AFeMIVLPgEvmG5LfgEvhJBvwAuhnpJ/wAshveQj8EJo
rOQn8EKIJF+BF0rIX+CFUpvkM/BCabPkN/BCSZN8B14oIf+BF0Zlkg/BC6Or
kh/BC6Mxki/BC6N4yZ/ghRHyKXjhhPwKXjh1Sr4FL5yQf8ELJ+Rj8MIJ+Rm8
CEK+Bi+C8iV/gxdByZLPwYugo5LfwYsg5HvwjIT8T0M+SP+UfBC+kaZLfijX
b5yRkC9qMs8YCfmjeKlGuiL5JK5/I6VJfilelZH2S76J+8FIyD/FazES8lHU
ZyLkp6jPRMhXUZ+JHCR/RX0mQj6L+kyE/Bb1mQj5LuozEfJf1Gei6ZIPoz4T
IT9GfSZCvoz6zLRU8mfUZybk06jPTP0lv0Z9Zrop+TZ+LzO1Sf6N+sw0QvJx
1GcmF8nPUZ+ZkK+jPjMtkvxdvBYzPZR8HvVZ6HnJ71GfhZDvoz4LPZb8H/VZ
KEmeD6A+C82Q5weoz0J4voD6LITnD6jPQsXyfAL1WQjPL1CfhT6T5xuorwfh
+Yf2X3MuUFM=
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[0, 1, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJxF2XlYVeUWBnBk5gAyz8OZSL0aXU3F6lZ7KWqh2KhWDmhq5PU6IGapXQ0V
cJ4ytbTMuGpqqAiioMK3EGQU5zQtFKPQW0CogKiYN89693PPPz487vPb65yz
9/et9W7zhBlvvGdvZ2e3rpOd3eN/5RXFVZ8nJEZ1rVKJj1/1VrZ67bmVHVCl
qk8+fll5xcCe14yOVar341eOleeoOU1TbleqzV88flk5c8rpq+trK5WNS7Hy
r98PmLH5VKV4iVZe/UlGwoJjleLFWzmg6/x/aXsqxett5Y/9I4fXbIIXYuXc
adMvvpUGz87KVfOTsvYlw6u38KzJXtuuj4N30sLdwu5MaI6Hl2PhkYcXHLry
rF6fhZe7nn5rWxe9Pgtfd8536O+n12fhHz8u+/DYowrUZ+Gap6ZO822oQH0W
jo2bvn3ADxWoz8JxN1J+iC+pQH0W7rsmurRnVgXqM/Oa8HN/a9oC76SZJxZu
ValL4OWYeYnrZ7EtyfC+MHNl8MKZzyfASzHz5tOdnMbGwUs0s2FxSv6IPnp9
Zs5vOjeki1Gvz8ypU7rOPuWm12fmrI0bW4a1lKM+M7/+ZEza9qvlqM/EV0YF
1p0tL0d9JnYZoFV+n12O+kyctnRf2/4vy1GfiUu8RkSNT4eXYuKyEn+v+hnw
Ek0875BK7v8OvHgTN3YqdE8eAK+3iV3r3Td91ANeiImrPXeffd1fr8/ElXOL
5tg9LFO2ck4a+ct/7olb/GsZzm/k4VOvdbpSXYbzGbl606MEx0Nl8I0cc6My
0n5rGTwj57Hx0bk03Ytkr13tBR9O071IvpY6KKxxuO5F8qULNy/2fV73IrnD
K23/a1bdi2S3ZxdMesGgexHcMrUl90FzKbwIHrSvcNKKS6XwIrhvw3tPNxSU
wovg9weZrkdsL4UXwXbpJ3ublpfCC+ew642Nt2foXjjvz3jhwoYRuhfOt9rP
73H9h+6Fc9Yw+75DTboXzrs+HNJvrJPuhXHyw1EfvfjbCXhhHFPreqzp1Al4
YXz6q7jqaTkn4IXx5ZXRHxzddAJeGAfOvzLv0scn4IVydkZ6ZtE43QvlQPL4
fm6s7oXy3YnvqkdddC+UM4e/3e9Ng+6F8lcnehs+aCyBF8Krpn/tPOFMCbwQ
njVyT0d4Tgm8EB6SVFSwfUMJvBDut2xP+L2PSuCF8M/pnzSGjNK9YL4YMsjJ
5XndC+ay+uZnOEL3gtl9YGPCoEfF8ILZ93z/VzfWFsML5mXDV9ZlFxXjfgji
J1oftG3OKFY27osgzm+MT3xlcTG8IPabXeJVPVH3gnibffT5wIG6F8RjerWu
7RGle4G8ymVvd3dH3QvkmPbotNy64/AC+fj+mvTuxcfhBXLRvYygKRnH4QWy
96Y60wcLj8ML4FmjF616efxxeAH8w9qauBsv6l4AL99aHftahO4F8ImkYVMW
PyiCF8A7elXuT7lchO/Pn5/rNdHw8uEieP687GbVzMufFcHz5zKnwdf6JBfB
8+fM7t8MG/Wq7vnzwl+fy497Uvf82LHuT6ODm+75ceXI9xem/8rw/Pj9/C1X
zxcxPD/Onlb3wu9fMTw/HvfO7N0n5zI8X15yZmj0nBEMz5czNMulxp6658sj
vD48FO2he75smu6VP+OUgufLg+8ezgtOVfB82Lh/3oaRzyp4Pjx6dlHy35oK
4fnw9HPn0tZlFMLz4Xd33o5cM7IQng97TvpjlcVQCM+b2+64W+ILCuB5c2R8
YHePpAJ43hy2Y37LBEsBPG9e99Lk069dOAbPm79pLHe9mHZMfW57vxd7Zz79
8HbMMfW07XgvXvTHE1123TiK83Xm1LCj91s3HYXfmacNzG796aWj8Dqz/+mV
G8bePQLPk5sWfTZmzs4j8Dx53bafz0SPOALPg5PuJv57gcMReB78ZmtTw5QD
+fA82Lc+s+BOQj48d3bYu2ZTiEc+PHcOefuguSYvD56Bo67ucNPey4Nn4MUx
kxzIJw+egStemVhRe+wwPDfu0W95uGXyYXhuPKBtQZmj32F4rtxuvvXlsoJD
8Fx5X03/KQfePwTPlR8eznGa73MIngsXhFtfbTySC8+Fq57q+LvDpFx4znwh
utcW5ZELz5mvDJ662pp7EJ4zu+/I9+g59iA8J3YOHm6odzwIz4m3e99OHZyZ
A8+Ru3drS3/jzRx4jmx9bmxX9/vZ8Bz5eOLeZTO3ZcNz4LWr+lxNH5wNz4Fb
1lwcHd9wAJ49r2/tZixedwCePZc4+g1tiDkAz57LvNp8Kn7MgteJX/9+Q+6o
lCx4nTi7m/2SjKgseHY8psChOnbdfnh2TL8NmX/wh33w7Lgl6NG+L4z7VE/b
+x+p6NIDv7e+t1dNth3/pzrb42Bt1XeZON9DNfrm9YTIW9+pcpvfoQrHTB/V
3Pc7eB3qiVdzfxs4bw+8B2pI3MlYY+FuePfVw59uv7Go025491RD7LWrSQN3
wWtXt2b1uNCY/i28dpX/7rTBHeU74d1Vl+84JH1t2AmvTYU33zhwZegOeK0q
NcBx7YGV2+G1qAbLS290rf4PvBbVWrn+wYue/4F3R83p2z/rQXwGvNvqaMOw
o+NXfgPvlnKo7rN6ZtU2eM1q4ZOl3MuwDV6zihtTaxyybqsab3t/k/rl58Ko
rZ5fqTO24xvUobOLvRKXbcH5flfPq16rdjluVmtt/n9VgnPeqqmffA7vplpR
mRebf28jvHr1y86RURtnbYD3i9pa21RvaFwPr065en92NzLxU3jX1Ybfdr92
+epaeLWqqH7XuEX7Viu2vf8nFT763rmjW1eoFNvxl5Ulc+XZaauX4nwXVY3B
a9y389OUyeafV9+p1MyPpi6Cd0Ztn3c2/8fcBXh/hXKMWTiu16dzlJ3t+GIV
tXfO+M7Tk/H/+con2GWNef1kZWf7e7dayN++MGr92/r19/+XbQPfrc0tsv2/
Jn/na6vk/RqJr00UX2M5vzZAzq+hPg314fjzWoXUr6XI59M65PNp2+TzaySf
X6uV70f7h3w/8Go1fH84/rq2Q75f+HVakHz/Gn4fDb+PliS/n3Zbfj94NzX8
vvD+q02V3x/e79pQuT7gNWi4fuA1aS1yfcFr1nD94fhmbalcn/BvaQa5fjVc
3xqub+0Zuf61FLn+4bVobXJ/wGvRWuT+gdeqrZT7C16bFib3H7y72jW5P+G1
a7h/4bVrd+X+hndPuyP3P7z7GtYHeA+04bJ+wOvQusj6Aq9DOyHrD7yH2gRZ
n+D9qWH9gvdI6yvrGzw7wvqH4+1ooKyP8O1ooqyfWh9ZX+mgrK/al7L+0ghZ
f+HZE9ZneH/9Les3PHvaKOs7PAdqk/UfngOtl/0BniMVyf4Bz5G6yP4Cz5Ge
lP0HnhPtlP0JnhO5yf4Fz5mwv8FzphrZ/+A50yXZH+G5ULXsn/BciGV/hedK
2H/huVK27M/wXOm+7N/w3ChW9nd4bvSU7P/wDIT+AJ6BUqV/gGegLtJfwHOn
UOk/4LmTi/Qn8DwI/Qs8Dxoh/Q08D0qW/geeJ22Q/gieJzVL/wSvM6G/gteZ
Zkj/Ba8zLZX+DJ4XLZb+DZ4X+Ut/B8+bvpb+D8d706fSH8L3JqP0j5rMN95k
kv5SOyX9J92X/hOeD3lJfwrPhyZI/wrPh2ZKfwvPhxKk/4XnQybpj+H50iDp
n+H5kln6a3i+9Lb03/B8Cf05PF9aJv07PD9KkP4enh+h/4fnR/+U+QCeH2F+
gOdHTjJfwPMnzB/w/GmvzCfw/Klc5hd4/rRc5ht4/vSizD/wAgjzEbwAKpX5
CV4AYb6CF0CYv+AF0GyZz+AFEuY3eIF0XOY7eIFULPMfvEDCfAgvkNbI/Agv
iDBfwguir2X+hBdEvjKfwguiPJlf4QVRN5lv4QXTCpl/4QWTv8zH8ILJU+Zn
XL/BVC7ztSb9ZTBh/oYXQrUyn8MLIczv8EIoTuZ7eCGULPM/vBBCPgAvlLZI
fgAvlJAvwAuldskf4IUS8gl4oZQj+QW8MEK+AS+MfpL8A14YnZF8BF4Y9ZP8
BF4YJUm+Ai+ckL/AC6f9ks/AC6c/JL+BF05Zku/ACyfkP/AiyF7yIXgRNFny
I3gRFCP5ErwIGiz5E7wIQj4FL5KQX8GLpPuSb8GLJORf8CIJ+Ri8SEJ+Bs9I
yNfgGekZyd/gGemk5HPwjPSm5HfwjIR8D56JkP9pyAfplOSD8E1kkPxQrt94
EyFf1GSeMRHyR/FS/vIkn8T1b/prP7bll+LlmGiJ5Ju4H0yE/FO8ehMhH0V9
ZkJ+ivrMhHwV9ZlpqeSvqM9MRySfRX1mQn6L+syEfBf1mQn5L+oz03LJh1Gf
mZAfoz4zIV9GfRbqLfkz6rMQ8mnUZ6FBkl+jPgtdk3wbv5eFaiT/Rn0WqpN8
HPVZaLXk56jPQsjXUZ+Fukr+Ll69hWZKPo/6rFQp+T3qsxLyfdRnpbmS/6M+
K/nJ8wHUZ6W18vwA9VkJzxdQn5Xw/AH1WeljeT6B+qyE5xeoz0pR8nwD9UUR
nn9o/wNj5It/
"]]}}, {}, {}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox["py", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-10., 10.}, {-0.07071067491694026, 0.07071067491694026}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.767847725107185*^9, 3.767847800794565*^9},
3.767847839142544*^9, {3.767848017754282*^9, 3.767848059149324*^9},
3.7678483274372787`*^9},ExpressionUUID->"196f1ba1-7883-4bda-8824-\
e18de94b360e"],
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011111111111111112`], AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxdmXlcjen7x1NCRGlkrGE8Z02FsUvXFaIQJruotKgkYSxRRiWJlDYl2ve9
c8oowmXGlt2E7LJO2VVDljG+/X73uf/wnH/O63md13mW+7mu6/P5vO9Brn4O
HtpaWlox7bS0/u/7mLvnp9O2Q3CHIUzu1aec5i8+XqYeNQT/PHhm+sZu5TTv
LyujAmEIlpsNfEHa5WSw1nN0sdEQzNk6+5+mD2rClkcjq7WGYE3TCOj6Uk2J
k7YJdW9M8e2T4LTu9WqaUTG9z9d7puhc+Mfz/2rVVNrf03zoBVN095vTfP2M
mo4Ymfn7HTbFr67ekXFH1NS/wyCD6jxTFOz+iRpXqqbKNc2df0gwxeEF78+f
y2g7/4PAbRtDTbF1v7Ox9V41GXSqiW5ca4qrPVut08PVlKHdafryZaY4bvNc
oSFATS2uKeffzTLFjo71e4z91HTc3VgebmWK1mVXF5i6qulCd2XgEDNTbMiz
mCWfp6Z89z/r7/c1xcZzzbb6tmqKnNTsk9zZFM3C7HrdHKem9Vs+j/X6pMSw
t/Oiw83UNOqhrZt1oxI3OZuEDhyoJqPZ/u3kN5XY+YfdZ1KN1DSmfrZ5vzNK
tL7urdTRVZPds7M6Jr8rcbHKNcS+VUWPe2olm2UrcXi1VsaW5yoalGLXfXqc
Eo/WFy2Mu6uiH8x++m1DiBI7ahcFRF1S0dWOI7+WrVGiNG33vVWkopDTiwta
XZSoM7XPzBFqFV13SEqxn63EAQYGWQ8yVfSkefB7NShxd3+h1DdeRQetHC8I
Fkq0bOg28dF2Fe0RLo3PNWm7n+Ctw8ZuVJFnwwjXUd2UWKo7YNZ6LxXZmAQs
vvFVgSGdo3z3LlJRYcXvuO21Au+YuTknTVPRu6eyYXhfgXmblK1B41UUqJxo
q39JgXbtrnecMURF/e9lZDYcVaBjUrn7534qKjLuvrS2WIHhTn0fRXRV0cuU
sPiLyQo83NouQ+vfMvI/K1let1uBAaOf6JfdK6O8X6zevg1U4OlnipKfjpXR
OrsZ9r19Feh5fq7CMaWMPF+0pjgsVWDqzm6KhVvKaPNW428H7BU4bb5ybu+l
ZaQ7OSfq/QQF9niY7pBqWUZd2l1b4WyuwOuOHa/83bft96Hv1bdNFHiu76Nf
mz+XUnlUZIi7gQK/UIcXJ26XUuUX2y/fvsnx0AeHu79UlVKT/rdxxe/k+G78
gebshFI6l6N28X4kx6WN+XcPryul4MjdEaNr5Tg1evikaIdSCtd9dqfnSTnW
q2/UyYaW0iXnsas6HpRjcbmhTVDXUtLfO9RDL0eOwpAJE5JelND6U0n1/RLk
aGXusHrt2RL6+YjPV+sdckz44BfVJbuEwrxPP/D3l+PLoyVT3INKqEvk66w/
vOU4MrXKLnBJCaV8/sW3n6McJ+VdtpszpoTGtIY57pwhR9ugQ58bfyihml1T
9nSykmOPLZXdJ7wtps7X/RT7LeQ4qHuszazzxeS+pMN0q0FyrMn1nzkgp5iO
+Qwzfm8kxze3Ov1dvLWYpJ7jC463l2M/reozrYuKCapj5Ac+yPC9xc2Cbz8X
08MTpw7uapRhdN8Ldqe6FlNRU5hf5B0ZSsvfuto0FNEE/eLNWRdlaGS1tSLk
RBEFjJF/vHhchkk1kV8CkoromqlB585qGXZ92e7r0LVFtN0+rnZxlgzt9KMC
MqYV0dM77dfRXhma6xVaXvqpiFb8+JfhmHAZ9r/UoePBz4X0y7vgC6c2y/D3
n60z5tUWktzv2BkPXxm66zZcUxcUUvChyZK+LjL07V3iXRNUSI//a9Z75iBD
/TMeFkkLCqkq7mjiSRsZDk/+3DLYvJDmXy1pOjRGhjNil4d7tS+kV/1ejCNT
GfZOVtHyOwUU/LIw4Z6JDJWlf68yURXQlutWcgMjGUoSm3z2bC+g+RZ6PyzQ
bXvezpZRhxcXkJZn0OaDH6U4NT1WnWxRQI17h4TIXkmxGGorxrQvoEmBufaq
eim2s7+9LvJWPmVsSNCadU2KPudC6/YX51PAuorjOmelOPlKyVGXoHyiN38U
XT4ixQs+sq71c/LJ80Hsy7JSKbpeO1pmLMunIye1M/MypeiYcDSy/ec8clnx
sfn3BCmGJXbdW3Qxj8LcXLXv7pJitnVoVee0PLoZOvKfnlulWPnQ4PWgNXn0
9LzPK+9fpehcXq5omphHGeN1DK57SnF8VLCnf488aqz5d+u8JW33fy8ro/JZ
Ln0Z7uj2Znbb9W7PuVF6KJd0Xw66n2ojRTeT+nZOO3JpX+uc7p7jpPgw44r8
9IJc6vtf0+CpFlKcFBvq8FSWS5YDWseAIEXlxuTd1a05tGXOgnWzekvx4AmD
hmlnc6hS/t+njd2kaFZoti42IYdytl56XaUjxbPeKbaxHjnka5f8q9EnCZ5I
dQ6YNiKHhtuMLAt9I0GLz1ck1do5lHps3imDpxJcMSDP7enVbPrHtKSu4rYE
Gz4GzTiTmk3GHvf11lyRYNqjRzrLVmZTF1gTPPW0BF+tmkEHx2bTxcrbLqOr
Jej0+p+KPzpk06NzvhdQLcHszPKe4deyaKP1iqdueW3nv9+tX6f0LFoV03Q5
PUWCXifnfLRemUVe+V1KW+MkuOzO/vqRY7LowemcbK9dEuxpd1f3qU4WSfvH
3GgJkuChtRfzZ1zJpPfBm92SNkqwOG1V79X7M2kbNKxetEqCJZ6yvJkembQ+
fsTAER4STDW7mNVokUk18xPiFEskWDWiws3qcwYlJBq/HjtHgnYLqibMPpVB
D6fsmekxTYIuJ6wjTKIyyOFm+e0iawm+z56cX7Agg/Qfa6m6jpXg4492LU0D
M2h6U03zrqESdE2qudb6PJ26PR58crC87fo1zkeqy9PpiVaL9a0BEjw6zr+n
VUA6+V19sCf/Rwn6Pj/puHVSOkU/mXsp3kCC2lcmagd1SaeVldv7pHSUYFfv
UP3g3DTaGema+Mc3AaPtqq6GjEwjy44H3LQ/CqjTMse5w6lUerkwKdX5nYDp
IdZ/6Tuk0rLfQzxvNwo4oXbBmMT6FKq1G3Xf75GAs99PLs9dmUJLFdNMBt8R
0EEa6m35KZlODu9k11IroJvV7L2LtieT7MOKgIcXBDzTkLDpm2EyGe7qc+3F
KQE3OUV7WSQfIK/23r5GxwX0GJZZ/UJ6gJ4+mOu5oFLATgNXVw1X76dOGTvv
H1YJeOfERHWn8fup7xfHV2MLBYwcaau36lQSDT90uuxmloCh9oEj3O3bjrOX
TYpLEXDhg5jKVzf2UW2k558rEwXsYTRFrue0j3zG5091jxHQxthEUv0skXIG
xbzeFCFg7+YIRXvfRKqwGnq5ZLuAHdSrDj9rSaDMixY6WkEC6hnb+i7bnEAr
p/2Vs3qzgCv79W/210qgXtsbL39bJ+DEUQv1zMP20tX0uoQSPwEb5SXhIV32
UpLDduPNKwSsm7Jjjn90PKHnClcPDwEzj8wd0N04nhJ1ouP9XAQ8Zz4oZWZS
HNVdjv5zn6OAEWsv7R3eP45MhsZqP5ovoOW7l8+Pp8fSuwirFbYOAv7WmBrz
fnAsVQRTtyv2Aq6q90++lRtDTlOr2q+3EzDs7nCzFYoYaiyd6jLORsA5cTNG
FxdFU0Bpj5EDrAVsuRkfn24WTc83zUgYPEHAl2/Hro512kMtpskJU8cK2Dqk
YensZVHk5qO0jRgp4E82urjVLZLGGMYcfTNMwKsv6hMHe+wm6e269mvNBVxy
drHxxOURNGm93zBjUwHH3XbqVb98F8lspjnckgl4oNvp7P+W76T6ndc2VAsC
piW3e5m9PJwsTN+UHB8k4Kdoo1l1Hjtoostr3ccmApYun+KV6B5GyxZG7Zb0
E3DB+E7tXrtupx8bmmbu7C3g9glofM8llAID9i/q+qOAkxKv+3o7baM4s81V
6h5t9TWqxDnJMYT8DVo3bDASUK4c5LR6YTCdaHmW5mgoYNwiiV7L3CB60hA6
YVk3AQ9XTV88I/M3UpWuX7RDv239HtRs778/kGhc1b+XOrf9vy7ugVvMZjK+
n28xUk/ALif6TFOE+9PSeP3PRzsKuObJ6J4bf9tALRMN3Tw6tL3vpNUv5q9b
RxVONmvMdQU8bpm7u9Z7LZl2TVf2ai/gn2s7PWpxWk2HYX38TzoCBnbrcX1n
3kqiK/4V9toC7vmmik6L9iJh3NGIpHYC9sqLkE7Y5E4bx5cP7NB2vHBTEWxY
5kJ5Uebr47QEHGr54cax2IW05KB7hHXbcRfDxc49XWeTVfdUd8O24/lBfRSW
rkha//8RUEvz4b9/Yb8D/78T+z/w829j5wd+/WB2fRDdH/D7r2T3D/z5ctnz
AX/+Ovb8wNenlq0PiNYP+PqGsfUFvv4D2PqD6P0Af39J7P2B6P0Cf/8p7P0D
r4+fWX2AqH6A15c9qy8Q1R/w+nRh9Qm8fitZ/YKovoHXfyGrf+D9kcL6A3j/
2LD+AZmmv9xZfwHvv8us/4D3p5L1J4j6F15o+ruF9Tfw/v/I+h9E8wH4/Ihk
8wP4fPFj8wX4/NnG5g/w+WTN5hOI5hfw+XaZzTcQzT/g8/EWm4/A5+drNj+B
z1cbNl+Bz9+1bP6CaD4Dn996bH4Dn+/92XwHPv9t2fwHrg+9mT6ASD+A60s4
0xfop9GfaKY/wPXpPtMn4Pqlz/QLRPoGXP8Cmf4B18dzTB+B6+dypp/A9XUe
01cQ6S9wfZ7M9BleafQ7m+k3cH1vz/QduP7HMf0HkT8AkX8A7i/8mL8A7j+O
Mf8BBhp/omL+BET+Bbi/ecL8DXD/08r8D3B/5Mb8ESRq/NN05p9A5K+A+680
5r+A+zMV82fA/VsJ82/A/V0V83fA/Z8x83/g/b0/BO4ffZh/BO4vfZi/BO4/
c5n/BO5PXZg/BZF/Be5vM5i/Be5/nzP/C2kaf+zD/DGI/DOI/DVw/32e+W/g
/tyc+XPg/v0Q8+/A/b2C+XsQ+X/g+eAxywcgyg/A88USli9AlD+A5xNLlk/g
mSa/LGP5BXi+qWL5Bnj+yWf5B0T5CHh+WsryE3hp8pUby1dwQpO/zrP8BTyf
TWX5DET5DXi+02H5Dnj+K2X5D0T5EHh+NGb5EUT5EkI0+VPB8ie81uTTXiyf
wgJNfp3O8ivwfDuK5Vvg+deA5V/g+Xg1y8fA87Mny8/goMnXlSxfgyh/A8/n
piyfgyi/w/Xv8z0EavL/Ppb/QcQHoFDDDySMH4CILwDnDx8YfwCZhk+YMD4B
nF+8ZfwCRHwDOP+QMP4BnI8YMz4CYzX8ZBrjJ8D5CjK+AiL+Ajs0fOY54zMw
QsNv4hm/Ac53gPEdEPEf4HyolPEh4PzoIeNHwPmSLeNLcF7Dn5wYfwIRnwIR
v4IKDd/6yPgWiPgXiPgYiPgZiPgacP6WzvgbrNfwueWMz0G+ht+dYvwORHwP
RPwPOB/cxfggmGj44RLGD2HL93wRRPwROJ+8x/gkcH4ZyvgleGn4ZhnjmxD9
Pf8EER8FET8FEV+FbRr+qsv4K4j4LIj4LYj4Loj4L3A+vITxYRj7PT8GEV8G
zp/9GX8GEZ+GKA2/tmD8GjjffsH4NlzS8O/njH8D5+MTGR8Hzs/1GD8HEV8H
Qw1/92P8HfZp+PwHxueB8/thjN+DiO9DtYb//8v4P5Rp9gfc2P4A2Gv2D1zY
/gGI9hdAtP8Ahpr9iTy2PwHzv9+/gIWa/Y2TbH8DRPsf8D/BWHM2
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[1, 0, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJxdmXlcjen7x1uEiNLIWMN4zpoKY5euK0QhTHZRaVFJwliijEqSpUTURKVI
hfbSXtc51uwmZJd1yq4asozx7fe7z/2H5/xzXs/rvM6z3M91XZ/P5333d/N3
9NTR0tLara2l9X/flR5en8/YDcStRjChe8+TNGdBVU7e8IF4svDslHWdT9Ls
v6yNjwoDMd+830vSOUmGq7xGZBoPxCObZvzT+FFN2Px4WLnWQKxuHAqdXqkp
bvxmofatGb57GnKwS52aphZM6fntvhm6HFO/+K9GTdl9vCwGXTRDD/+ZTTfO
qqnM2DzAv9QMv7n5RMaUqalP2/6G5elmKNj/EzU6W03FK5s6/BRrhkOOfrhw
PqX1/A+DNq8LM8OW/S4mNvvUZNi+OrphlRmu8GqxSY5QU4pO+ylLFpvh6A2z
hPpANTW7JV54P90M2znV7TLxV1OVh4k8wtoMbXKuzTVzU9PFLsqggeZmWJ9u
OV0+W00ZHifrHvQyw4bzTXYGdmqKHN/km9DBDM3D7bvfGq2mNRu/jPL+rMTw
d7OjI8zVNPyRnbtNgxLXu5iG9eunJuMZAdryW0rs8NPOs0nGahpZN8Oi91kl