-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
89 lines (71 loc) · 3.77 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""
Plotting of Pixcap65 data.
"""
import tables as tb
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib import pyplot as plt
from matplotlib.figure import Figure
from matplotlib import cm
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
cmap = cm.get_cmap('viridis')
def plot_data(interpreted_data):
with PdfPages(interpreted_data[:-3] + '.pdf') as output_pdf:
with tb.open_file(interpreted_data, mode='r') as in_file_h5:
# Read pixel map
current_hist = in_file_h5.root.HistCurr[:]
cap_hist = in_file_h5.root.HistCap[:]
# cap_hist[:, 0] = np.nan
# Read scan parameters
scan_parameters = in_file_h5.root.scan_params[:]
# 2D Pixel Capacitance Hist
fig = Figure()
_ = FigureCanvas(fig)
ax = fig.add_subplot(111)
im = ax.imshow(cap_hist * 1e15)
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, label='Pixel Capacitance / fF')
ax.set_ylabel('Column')
ax.set_xlabel('Row')
output_pdf.savefig(fig, bbox_inches='tight')
# 1D Pixel Capacitance Hist
fig = Figure()
_ = FigureCanvas(fig)
ax = fig.add_subplot(111)
ax.hist(cap_hist[~np.isnan(cap_hist)].reshape(-1) * 1e15, bins=50)
ax.set_ylabel('Counts / #')
ax.set_xlabel('Pixel Capacitance / fF')
ax.grid()
output_pdf.savefig(fig, bbox_inches='tight')
# Current vs. frequency
for col in range(0, current_hist.shape[0]):
for row in range(0, current_hist.shape[1]):
if np.isfinite(current_hist[col, row, 0]):
fig = Figure()
_ = FigureCanvas(fig)
ax = fig.add_subplot(111)
res = np.polyfit(scan_parameters['frequency'], current_hist[col, row] * 1e9, deg=1, cov=True)
f = np.arange(0, scan_parameters['frequency'].max() * 1.1, 0.1)
ax.plot(f, res[0][0] * f + res[0][1], color=cmap(0.6), ls='--', marker='', label='Fit to data:\n$C_d = %.1f\,$fF' % res[0][0])
ax.plot(scan_parameters['frequency'], current_hist[col, row] * 1e9, marker='o', ls='', label='Pixel({i_col},{i_row})'.format(i_col=col, i_row=row), color=cmap(0.2))
ax.set_ylabel('Current / nA')
ax.set_xlabel('Frequency / MHz')
ax.legend()
ax.grid()
output_pdf.savefig(fig, bbox_inches='tight')
# ax.plot(freq_sweep_array, fit_fn, label = 'a={a:.3E}, b={b:.3E}'.format(a=a, b=b))
else:
continue
# #apply linear fit to measured current values; also returns covariance matrix
# matrix = np.polyfit(freq_sweep_array, current_array, 1, cov=True)
# a, b = matrix[0][0], matrix[0][1]
# #da = matrix[1][0][0] #squared fit error of a
# #db = matrix[1][1][1] #squared fit error of b
# #data structure in txt file: "slope, offset (y-intercept)"
# # fit_fn = a*freq_sweep_array + b
# # pl.plot(freq_sweep_array, current_array, 'o', label = 'COL({i_col})PIX(0)'.format(i_col=i_col))
# # pl.plot(freq_sweep_array, fit_fn, label = 'a={a:.3E}, b={b:.3E}'.format(a=a, b=b))
if __name__ == '__main__':
plot_data(interpreted_data='/home/silab/git/pixcap65/pixcap_LF_50x50_DC_R3_80V_HV.h5')