-
Notifications
You must be signed in to change notification settings - Fork 0
/
json_creation.py
executable file
·561 lines (479 loc) · 23 KB
/
json_creation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import json, re
from sys import stdout
# Visit data
visit_drepano = pd.read_csv("./data/CVO_stay.csv")
visit_drepano_init = visit_drepano.copy()
print("Visit data:")
print(visit_drepano.shape)
print(visit_drepano.head())
# Sort lines by date
visit_drepano.sort_values(["START_DATE", "END_DATE"], inplace=True)
visit_drepano.index = range(1, len(visit_drepano) + 1)
print(visit_drepano.head())
print("\n Finally : %s lines on the Visit dataset, corresponding to "
"%s patients and %s different encounter_num" %
(visit_drepano.shape[0], len(set(visit_drepano.PATIENT_NUM)),
len(set(visit_drepano.ENCOUNTER_NUM))))
# Transfusion
transfusion = pd.read_csv("./data/CVO_transfusion.csv",
sep=';',
encoding="ISO-8859-1")
print("\nTransfusion data:")
print(transfusion.shape)
print(transfusion.head())
visit_drepano = visit_drepano.merge(transfusion, how='outer', on="ENCOUNTER_NUM")
visit_drepano["transfu_count"].fillna(0, inplace=True)
# Bio data including bios urgence
bio_drepano = pd.read_csv("./data/CVO_bio_dont_sau.csv",
sep=';', encoding="utf-8")
print("\nBio data:")
print(bio_drepano.shape)
print(bio_drepano.head())
# tval_char useless
bio_drepano.drop('TVAL_CHAR', axis=1, inplace=True)
# Remove lines with NA values
tmp = bio_drepano.shape[0]
bio_drepano = bio_drepano.replace('(null)', np.nan).dropna(axis=0, how='any')
print("%s lines removed" % (tmp - bio_drepano.shape[0]))
# Remove lines on the Visit dataset corresponding
# to patients without any bio info
tmp = visit_drepano.shape[0]
visit_drepano = visit_drepano[
visit_drepano.PATIENT_NUM.isin(bio_drepano.PATIENT_NUM)]
print("%s lines removed in visit_drepano "
"(without bio info)" % (tmp - visit_drepano.shape[0]))
# Remove lines on the Bio dataset not matching
# any patient_num of the Visit dataset
tmp = bio_drepano.shape[0]
tmp1 = (bio_drepano.PATIENT_NUM.unique()).shape[0]
bio_drepano = bio_drepano[
bio_drepano.PATIENT_NUM.isin(visit_drepano.PATIENT_NUM)]
print("%s lines removed in bio_drepano (%s patients not in visit_drepano)" % (
tmp - bio_drepano.shape[0],
tmp1 - (bio_drepano.PATIENT_NUM.unique()).shape[0]))
# Remove lines on the Visit dataset not matching
# any encounter_num of the bio dataset
tmp = visit_drepano.shape[0]
visit_drepano = visit_drepano[
visit_drepano.ENCOUNTER_NUM.isin(bio_drepano.ENCOUNTER_NUM)]
print("%s lines removed in visit_drepano"
" (no encounter_num in bio_drepano)" % (tmp - visit_drepano.shape[0]))
# Remove lines on the bio dataset not matching
# any encounter_num of the Visit dataset
tmp = bio_drepano.shape[0]
bio_drepano = bio_drepano[
bio_drepano.ENCOUNTER_NUM.isin(visit_drepano.ENCOUNTER_NUM)]
print("%s lines removed in bio_drepano"
"(no encounter_num in visit_drepano)" % (tmp - bio_drepano.shape[0]))
# NAME_CHAR differ for same CONCEPT_CD depending on SOURCE (Adm ou Urg)
print("Merging different NAME_CHAR with same CONCEPT_CD...")
for concept in bio_drepano.CONCEPT_CD.unique():
bio_drepano.NAME_CHAR.loc[bio_drepano.CONCEPT_CD == concept] = bio_drepano.NAME_CHAR.loc[bio_drepano.CONCEPT_CD == concept].iloc[0]
# Concepts to remove
concept_bio = bio_drepano[
['CONCEPT_CD', 'NAME_CHAR', 'PATIENT_NUM']].drop_duplicates().groupby(
['CONCEPT_CD', 'NAME_CHAR']).count()
# We only keep concepts present for at least 7 patients
concept2remove = [row[0] for row in map(list, concept_bio[
concept_bio.PATIENT_NUM < 7].index.values)]
# Add the other concepts to remove
concept2remove += ['BIO:3771', 'BIO:4252', 'BIO:10392', 'BIO:10392', 'BIO:4249',
'BIO:16048', 'BIO:16044', 'BIO:16045', 'BIO:16049',
'BIO:16052', 'BIO:16053', 'BIO:16054', 'BIO:16055',
'BIO:4634', 'BIO:13576', 'BIO:1356', 'BIO:13577']
tmp = bio_drepano.shape[0]
tmp1 = bio_drepano.CONCEPT_CD.unique().shape[0]
bio_drepano = bio_drepano[~bio_drepano.CONCEPT_CD.isin(concept2remove)]
print("only keep concepts present for at least 7 patients:")
print("%s lines removed, corresponding to %s concepts" % (
tmp - bio_drepano.shape[0],
tmp1 - bio_drepano.CONCEPT_CD.unique().shape[0]))
# Name_char to merge
bio2replace = ['BIO:1008', 'BIO:3046', 'BIO:3762', 'BIO:3031', 'BIO:17069',
'BIO:16987', 'BIO:3032', 'BIO:16612']
bio2keep = ['BIO:3066', 'BIO:17072', 'BIO:17068', 'BIO:17073', 'BIO:3056',
'BIO:3056', 'BIO:17074', 'BIO:3029']
for i in range(len(bio2replace)):
bio_drepano.NAME_CHAR = bio_drepano.NAME_CHAR.replace(
bio_drepano[bio_drepano.CONCEPT_CD == bio2replace[i]].NAME_CHAR.values[0],
bio_drepano[bio_drepano.CONCEPT_CD == bio2keep[i]].NAME_CHAR.values[0]
)
# Name_char to clean manually
name2replace = ['.*PNAB.*', '.*PEAB.*', '.*PBAB.*', '.*LYAB.*', '.*MOAB.*']
value2replace = ['Nb of polynucleaires neutrophiles',
'Nb of polynucleaires eosinophiles',
'Nb of polynucleaires basophiles',
'Nb of lymphocytes', 'Nb of monocytes']
for i in range(len(name2replace)):
bio_drepano.NAME_CHAR.replace(to_replace=name2replace[i],
value=value2replace[i], inplace=True,
regex=True)
print("Finally : %s bio infos remaining (%s distinct concepts), "
"on %s different patients, with %s different encounter_num." %
(len(bio_drepano.PATIENT_NUM), len(set(bio_drepano.NAME_CHAR)),
len(set(bio_drepano.PATIENT_NUM)), len(set(bio_drepano.ENCOUNTER_NUM))))
# Demographic data
demography = pd.read_csv("./data/CVO_patients.csv")
print("Patients data:")
print(demography.shape)
print(demography.head())
# Remove lines on the Demographic dataset not
# matching any patient_num of the Visit dataset
tmp = demography.shape[0]
demography = demography[demography.PATIENT_NUM.isin(visit_drepano.PATIENT_NUM)]
print("%s lines removed in demography"
" (no patient_num in visit_drepano)" % (tmp - demography.shape[0]))
print("Finally : %s lines on the Demography dataset, "
"corresponding to %s patients" % (
len(demography.PATIENT_NUM), len(set(demography.PATIENT_NUM))))
# Vital_parameters data
vital_parameters = pd.read_csv("./data/CVO_param.csv",
sep=';',
encoding="ISO-8859-1")
print("Vital parameters data:")
print(vital_parameters.shape)
print(vital_parameters.head())
# Remove lines on the Vital_parameters dataset
# not matching any patient_num of the Visit dataset
tmp = vital_parameters.shape[0]
vital_parameters = vital_parameters[
vital_parameters.PATIENT_NUM.isin(visit_drepano.PATIENT_NUM)]
print("%s lines removed in vital_parameters"
" (no patient_num in visit_drepano)" % (tmp - vital_parameters.shape[0]))
# Remove lines on the Vital_parameters dataset not
# matching any encounter_num of the Visit dataset
tmp = vital_parameters.shape[0]
vital_parameters = vital_parameters[
vital_parameters.ENCOUNTER_NUM.isin(visit_drepano.ENCOUNTER_NUM)]
print("%s lines removed in vital_parameters"
" (no encounter_num in visit_drepano)" % (
tmp - vital_parameters.shape[0]))
# Gathering concepts
name2replace = ['Temp.*', 'Saturation.*', '.*Poids.*', '.*PA.*', '.*Oxyg.*',
'.*respiratoire.*', '.*cardiaque.*', '.*EVA.*']
value2replace = ['Température [°C]', 'Saturation en oxygène [%]', 'Poids [kg]',
'PA syst/diast. [mmHg]', 'Débit O2 [L/min]',
'Fréquence respiratoire [mvt/min]',
'Fréquence cardiaque [bpm]', 'Douleur EVA']
for i in range(len(name2replace)):
vital_parameters.NAME_CHAR.replace(to_replace=name2replace[i],
value=value2replace[i], inplace=True,
regex=True)
# Separate pression systolic & diastolic
tmp = vital_parameters[vital_parameters.NAME_CHAR == 'PA syst/diast. [mmHg]']
vital_parameters = vital_parameters[
vital_parameters.NAME_CHAR != 'PA syst/diast. [mmHg]']
tmp = tmp[tmp.TVAL_CHAR.str.contains(' :: ')]
PAmax, PAmin = tmp.TVAL_CHAR.apply(
lambda x: x.split(' :: ')[0]), tmp.TVAL_CHAR.apply(
lambda x: x.split(' :: ')[1])
tmp.NAME_CHAR, tmp.TVAL_CHAR = 'PA max [mmHg]', PAmax
vital_parameters = vital_parameters.append(tmp, ignore_index=True)
tmp.NAME_CHAR, tmp.TVAL_CHAR = 'PA min [mmHg]', PAmin
vital_parameters.TVAL_CHAR = vital_parameters.TVAL_CHAR.apply(
lambda x: x.replace(',', '.'))
vital_parameters = vital_parameters.rename(columns={'TVAL_CHAR': 'NVAL_NUM'})
print('Variables in the Vital_parameters dataset:')
for var in set(vital_parameters.NAME_CHAR):
print(var)
print("Finally : %s visits have corresponding vital parameters data "
"in the Vital_parameters dataset, among the %s visits remaining "
"in the Visit dataset, corresponding to %s patients among the %s "
"total present in the Visit dataset." %
(len(set(vital_parameters.ENCOUNTER_NUM)),
len(set(visit_drepano.ENCOUNTER_NUM)),
len(set(vital_parameters.PATIENT_NUM)),
len(set(visit_drepano.PATIENT_NUM))))
# Pancarte data
pancarte = pd.read_csv("./data/CVO_pancarte.csv",
sep=';',
encoding="ISO-8859-1")
print("Pancarte data:")
print(pancarte.shape)
print(pancarte.head())
# Remove pain localisation because unstructured data
pancarte = pancarte[pancarte.CONCEPT_CD != 'QST:QN|16398']
pancarte = pancarte[pancarte.TVAL_CHAR != 'Evaluation impossible']
pancarte.TVAL_CHAR = pancarte.TVAL_CHAR.replace('Oui', 1).replace('Non', 0)
# Get either tval_char or nval_num depending on the concept
val_pancarte = [re.sub(r'.CM', '', str(row)) for row in pancarte.TVAL_CHAR]
for i, val in enumerate(pancarte.NVAL_NUM):
if val != '(null)':
val_pancarte[i] = str(val).replace(',', '.')
val_pancarte = pd.Series(val_pancarte, dtype=np.float64)
pancarte = pancarte.drop('TVAL_CHAR', 1)
pancarte.index = range(0, len(pancarte))
pancarte.NVAL_NUM = val_pancarte
pancarte = pancarte.dropna(axis=0)
pancarte[['PATIENT_NUM', 'ENCOUNTER_NUM']] = pancarte[
['PATIENT_NUM', 'ENCOUNTER_NUM']].astype(int)
# Remove lines on the Pancarte dataset not
# matching any patient_num of the Visit dataset
tmp = pancarte.shape[0]
pancarte = pancarte[pancarte.PATIENT_NUM.isin(visit_drepano.PATIENT_NUM)]
print("%s lines removed in pancarte"
"(no patient_num in visit_drepano)" % (tmp - pancarte.shape[0]))
# Remove lines on the Pancarte dataset not
# matching any encounter_num of the Visit dataset
tmp = pancarte.shape[0]
pancarte = pancarte[pancarte.ENCOUNTER_NUM.isin(visit_drepano.ENCOUNTER_NUM)]
print("%s lines removed in pancarte"
"(no encounter_num in visit_drepano)" % (tmp - pancarte.shape[0]))
# Put the same concept names that in the Vital_parameter dataset
name2replace = ['.*Temp.*', '.*SaO2.*', '.*Poids.*', '.*Max.*', '.*Min.*',
'.*bit O2.*', '.*FR.*', '.*FC.*', '.*EVA.*', '.*Taille.*',
'.*Patient.*']
value2replace = ['Température [°C]', 'Saturation en oxygène [%]', 'Poids [kg]',
'PA max [mmHg]', 'PA min [mmHg]', 'Débit O2 [L/min]',
'Fréquence respiratoire [mvt/min]',
'Fréquence cardiaque [bpm]', 'Douleur EVA', 'Taille [cm]',
'Sous O2 [0/1]']
for i in range(len(name2replace)):
pancarte.NAME_CHAR.replace(to_replace=name2replace[i],
value=value2replace[i], inplace=True, regex=True)
print('Variables in the pancarte:')
for var in set(pancarte.NAME_CHAR):
print(var)
print("Finally : %s visits have corresponding pancarte data, "
"among the %s visits remaining in the Visit dataset, "
"corresponding to %s patients among the %s total "
"present in the Visit dataset." %
(len(set(pancarte.ENCOUNTER_NUM)), len(set(visit_drepano.ENCOUNTER_NUM)),
len(set(pancarte.PATIENT_NUM)), len(set(visit_drepano.PATIENT_NUM))))
print("\nAnd %s visits have corresponding at least one pancarte "
"data or one vital parameter data, among the %s visits "
"remaining in the Visit dataset, corresponding to %s patients "
"among the %s total present in the Visit dataset." %
(len(set(
pd.concat([pancarte.ENCOUNTER_NUM, vital_parameters.ENCOUNTER_NUM],
axis=0).values)), len(set(visit_drepano.ENCOUNTER_NUM)),
len(set(pd.concat([pancarte.PATIENT_NUM, vital_parameters.PATIENT_NUM],
axis=0).values)), len(set(visit_drepano.PATIENT_NUM))))
print(set(visit_drepano.ENCOUNTER_NUM) - set(
pd.concat([pancarte.ENCOUNTER_NUM, vital_parameters.ENCOUNTER_NUM],
axis=0).values))
print("\nSo %s patients don't have any data in the "
"pancarte or vital parameter dataset:" %
(len(set(visit_drepano.PATIENT_NUM)) - len(set(
pd.concat([pancarte.PATIENT_NUM,
vital_parameters.PATIENT_NUM], axis=0).values))))
print(set(visit_drepano.PATIENT_NUM) - set(
pd.concat([pancarte.PATIENT_NUM,
vital_parameters.PATIENT_NUM], axis=0).values))
# Merging Pancarte & Vital_parameter data into a single Vital-parameter dataset
Vital_parameters = vital_parameters.append(pancarte, ignore_index=True)
# Syringes data
Syringes = pd.read_csv("./data/CVO_seringues.csv",
sep=',',
encoding="ISO-8859-1")
print("\nSyringes data:")
print(Syringes.shape)
print(Syringes.head())
# Remove lines on the Syringes dataset
# not matching any patient_num of the Visit dataset
tmp = Syringes.shape[0]
Syringes = Syringes[
Syringes.PATIENT_NUM.isin(visit_drepano.PATIENT_NUM)]
print("\n%s lines removed in syringes"
" (no patient_num in visit_drepano)" % (tmp - Syringes.shape[0]))
# Remove lines on the Syringes dataset not
# matching any encounter_num of the Visit dataset
tmp = Syringes.shape[0]
Syringes = Syringes[
Syringes.ENCOUNTER_NUM.isin(visit_drepano.ENCOUNTER_NUM)]
print("%s lines removed in syringes"
" (no encounter_num in visit_drepano)" % (
tmp - Syringes.shape[0]))
# Get all visits for previous_visit field
print("All visits:")
all_visits = pd.io.parsers.read_table("./data/CVO_previous.csv",
sep=',')
print("%s lines on the Visit dataset have "
"previous visits (before 2010)." % len(all_visits))
# Patient object definition and JSON file creation
print("JSON file creation")
class CreateDict(dict):
def __init__(self, **kw):
dict.__init__(self, kw)
self.__dict__.update(kw)
Patients = {}
list_patient_num = list(visit_drepano.PATIENT_NUM)
# list_patient_num = list_patient_num[:3]
consult = pd.read_csv("./data/consult.csv", sep=";")
id_patient = 1
count = 1
for patient_num in sorted(set(list_patient_num),
key=lambda x: list_patient_num.index(x)):
demog = demography.loc[demography.PATIENT_NUM == patient_num]
birth_date = demog.BIRTH_DATE.values[0]
sex = demog.SEX.values[0]
death = demog.DEATH.values[0]
death_date = demog.DEATH_DATE.values[0]
ddn = demog.DDN_DATE.values[0]
baseline_HB = demog.BASELINE_HB.values[0]
genotype_SS = demog.GENOTYPE_SS.values[0]
visits_associated = visit_drepano.loc[
visit_drepano.PATIENT_NUM == patient_num]
# use all visits to compute next and previous visit
visits_associated_all = visit_drepano_init.loc[
visit_drepano_init.PATIENT_NUM == patient_num]
list_encounter_num = list(visits_associated.ENCOUNTER_NUM)
visits = {}
id_visit = 1
for encounter_num in sorted(set(list_encounter_num),
key=lambda x: list_encounter_num.index(x)):
stdout.write("\rVisit %s / %s" % (count, visit_drepano.shape[0]))
stdout.flush()
count += 1
visit_detail = visits_associated[
visits_associated.ENCOUNTER_NUM == encounter_num]
rea = visit_detail.ICU_STAY.values[0]
ORAL_OPIOID = visit_detail.ORAL_OPIOID.values[0]
USED_MORPHINE = visit_detail.USED_MORPHINE.values[0]
USED_OXYCODONE = visit_detail.USED_OXYCODONE.values[0]
OPIOID_TO_DISCHARGE = visit_detail.OPIOID_TO_DISCHARGE.values[0]
LS_INACTIVE = visit_detail.LS_INACTIVE.values[0]
LS_ALONE = visit_detail.LS_ALONE.values[0]
MH_ACS = visit_detail.MH_ACS.values[0]
MH_PRIAPISM = visit_detail.MH_PRIAPISM.values[0]
MH_AVN = visit_detail.MH_AVN.values[0]
MH_ISCHEMIC_STROKE = visit_detail.MH_ISCHEMIC_STROKE.values[0]
MH_LEG_ULCER = visit_detail.MH_LEG_ULCER.values[0]
MH_HEART_FAILURE = visit_detail.MH_HEART_FAILURE.values[0]
MH_PHTN = visit_detail.MH_PHTN.values[0]
MH_RETINOPATHY = visit_detail.MH_RETINOPATHY.values[0]
MH_NEPHROPATHY = visit_detail.MH_NEPHROPATHY.values[0]
MH_DIALISIS = visit_detail.MH_DIALISIS.values[0]
transfu_count = visit_detail.transfu_count.values[0]
start_date = pd.to_datetime(visit_detail.START_DATE.values[0])
end_date = pd.to_datetime(visit_detail.END_DATE.values[-1])
age = (start_date - pd.to_datetime(birth_date)).days / 365.
duration = end_date - start_date
days, seconds = duration.days, duration.seconds
duration = days * 24 + seconds / 3600. # in hours
try:
next_visit = pd.to_datetime(
visits_associated_all[pd.to_datetime(
visits_associated_all.START_DATE)
>= end_date].START_DATE.values.min()) \
- end_date
days, seconds = next_visit.days, next_visit.seconds
next_visit = days * 24 + seconds // 3600 # in hours (discrete)
except:
next_visit = 'none'
next_consult = consult.consult[consult.ENCOUNTER_NUM == encounter_num]
next_consult = pd.to_datetime(next_consult.values.min())
if not isinstance(next_consult, pd.tslib.NaTType):
next_consult = next_consult - end_date
days, seconds = next_consult.days, next_consult.seconds
next_consult = days * 24 + seconds // 3600 # in hours (discrete)
if next_visit != 'none' and next_visit > next_consult > 0:
next_visit = next_consult
try:
yo = all_visits[all_visits.PATIENT_NUM == patient_num]
previous_visit = start_date - pd.to_datetime(yo[pd.to_datetime(
yo.END_DATE) <= start_date].END_DATE.values.max())
days, seconds = previous_visit.days, previous_visit.seconds
previous_visit = days * 24 + seconds / 3600. # in hours
except:
previous_visit = 'none'
bio = bio_drepano.loc[bio_drepano.ENCOUNTER_NUM == encounter_num]
bio_data = {}
id_bio = 1
for name_char in set(bio.NAME_CHAR):
bio_detail = bio[bio.NAME_CHAR == name_char].sort_values(
by="DATE_BIO")
bio_detail.index = range(1, len(bio_detail) + 1)
val = {}
for id_val in range(len(bio_detail)):
nval_num = bio_detail.NVAL_NUM.values[id_val]
# nval_num = float(nval_num.replace(',', '.'))
val[str(id_val + 1)] = CreateDict(
nval_num=nval_num,
concept_cd=bio_detail.CONCEPT_CD.values[id_val],
date_bio=bio_detail.DATE_BIO.values[id_val]
)
bio_data[name_char] = val
id_bio += 1
vital_data = Vital_parameters.loc[
Vital_parameters.ENCOUNTER_NUM == encounter_num]
vital_param = {}
id_vital = 1
for name_char in set(vital_data.NAME_CHAR):
vital_detail = vital_data[
vital_data.NAME_CHAR == name_char].sort_values(by="START_DATE")
vital_detail.index = range(1, len(vital_detail) + 1)
val = {}
for id_val in range(len(vital_detail)):
val[str(id_val + 1)] = CreateDict(
nval_num=str(vital_detail.NVAL_NUM.values[id_val]),
concept_cd=vital_detail.CONCEPT_CD.values[id_val],
start_date=vital_detail.START_DATE.values[id_val]
)
vital_param[name_char] = val
id_vital += 1
syringes_data = Syringes.loc[
Syringes.ENCOUNTER_NUM == encounter_num]
syringes_data = syringes_data.sort_values(by="OPIOID_START")
syringes_data.index = range(1, len(syringes_data) + 1)
syringes = {}
for id_val in range(len(syringes_data)):
syringes[str(id_val + 1)] = CreateDict(
opioid_start=str(syringes_data.OPIOID_START.values[id_val]),
duration=syringes_data.DURATION.values[id_val],
molecule=syringes_data.OPIOID_MOLECULE.values[id_val],
bolus_dosage=syringes_data.BOLUS_DOSAGE.values[id_val],
refactory_period=syringes_data.REFRACTORY_PERIOD.values[id_val],
max_dosage=syringes_data.MAX_DOSAGE.values[id_val]
)
visits[str(id_visit)] = CreateDict(
encounter_num=str(encounter_num),
age=age,
duration=duration,
rea=str(rea),
previous_visit=previous_visit,
next_visit=next_visit,
start_date=str(start_date),
end_date=str(end_date),
bio=bio_data,
vital_parameters=vital_param,
syringes=syringes,
ORAL_OPIOID=str(ORAL_OPIOID),
USED_MORPHINE=str(USED_MORPHINE),
USED_OXYCODONE=str(USED_OXYCODONE),
OPIOID_TO_DISCHARGE=str(OPIOID_TO_DISCHARGE),
LS_INACTIVE=str(LS_INACTIVE),
LS_ALONE=str(LS_ALONE),
MH_ACS=str(MH_ACS),
MH_PRIAPISM=str(MH_PRIAPISM),
MH_AVN=str(MH_AVN),
MH_ISCHEMIC_STROKE=str(MH_ISCHEMIC_STROKE),
MH_LEG_ULCER=str(MH_LEG_ULCER),
MH_HEART_FAILURE=str(MH_HEART_FAILURE),
MH_PHTN=str(MH_PHTN),
MH_RETINOPATHY=str(MH_RETINOPATHY),
MH_NEPHROPATHY=str(MH_NEPHROPATHY),
MH_DIALISIS=str(MH_DIALISIS),
transfu_count=str(transfu_count)
)
id_visit += 1
Patients[str(id_patient)] = CreateDict(
patient_num=str(patient_num),
sex=str(sex),
birth_date=birth_date,
visits=visits,
death=str(death),
death_date=str(death_date),
ddn=ddn,
baseline_HB=baseline_HB,
genotype_SS=str(genotype_SS)
)
id_patient += 1
json_file_data = json.dumps(Patients)
json_file = open("json_file.json", "w")
json_file.write(json_file_data)
json_file.close()
print("\nJSON file created!")