-
-
Notifications
You must be signed in to change notification settings - Fork 92
/
20GAN.py
179 lines (136 loc) · 6.24 KB
/
20GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(opt.latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *img_shape)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
class Skylark_GAN():
def __init__(self, opt, cuda):
# Initialize generator and discriminator
self.generator = Generator()
self.discriminator = Discriminator()
# Loss function
self.adversarial_loss = torch.nn.BCELoss()
if cuda:
self.generator.cuda()
self.discriminator.cuda()
self.adversarial_loss.cuda()
# Optimizers
self.optimizer_G = torch.optim.Adam(self.generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
self.optimizer_D = torch.optim.Adam(self.discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# Configure data loader
os.makedirs("dataset/mnist", exist_ok=True)
self.dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"dataset/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=opt.batch_size,
shuffle=True,
)
self.Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
def train(self):
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(self.dataloader):
# Adversarial ground truths
valid = Variable(self.Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)
fake = Variable(self.Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)
# Configure input
real_imgs = Variable(imgs.type(self.Tensor))
# -----------------
# Train Generator
# -----------------
self.optimizer_G.zero_grad()
# Sample noise as generator input
z = Variable(self.Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))
# Generate a batch of images
gen_imgs = self.generator(z)
# Loss measures generator's ability to fool the discriminator
g_loss = self.adversarial_loss(self.discriminator(gen_imgs), valid)
g_loss.backward()
self.optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
self.optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = self.adversarial_loss(self.discriminator(real_imgs), valid)
fake_loss = self.adversarial_loss(self.discriminator(gen_imgs.detach()), fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
self.optimizer_D.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(self.dataloader), d_loss.item(), g_loss.item())
)
batches_done = epoch * len(self.dataloader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_imgs.data[:25], "img/mnist_results/%d.png" % batches_done, nrow=5, normalize=True)
if __name__=='__main__':
os.makedirs("img/mnist_results", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
cuda = True if torch.cuda.is_available() else False
gan = Skylark_GAN(opt, cuda)
gan.train()