-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_staging.py
34 lines (23 loc) · 910 Bytes
/
_staging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from flask import Flask, request, render_template
import joblib
import pandas as pd
app = Flask(__name__)
model = joblib.load('logistic_regression_model.pkl')
@app.route('/', methods=['GET', 'POST'])
def predict():
if request.method == 'POST':
temp = float(request.form['temperature'])
humidity = float(request.form['humidity'])
soil_moisture = float(request.form['soil_moisture'])
# Prepare the input data as a DataFrame
input_data = pd.DataFrame({
'temp': [temp],
'humidity': [humidity],
'soil_moisture': [soil_moisture]
})
prediction = model.predict(input_data)
pump_status = 'ON' if prediction[0] == 1 else 'OFF'
return render_template('index.html', prediction=pump_status)
return render_template('index.html', prediction=None)
if __name__ == '__main__':
app.run(debug=True)