forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
176 lines (147 loc) · 6.02 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import io
import os
import re
import subprocess
from typing import List, Set
from packaging.version import parse, Version
import setuptools
import torch
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME
ROOT_DIR = os.path.dirname(__file__)
# Compiler flags.
CXX_FLAGS = ["-g", "-O2", "-std=c++17"]
# TODO(woosuk): Should we use -O3?
NVCC_FLAGS = ["-O2", "-std=c++17"]
ABI = 1 if torch._C._GLIBCXX_USE_CXX11_ABI else 0
CXX_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
NVCC_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
if CUDA_HOME is None:
raise RuntimeError(
f"Cannot find CUDA_HOME. CUDA must be available in order to build the package.")
def get_nvcc_cuda_version(cuda_dir: str) -> Version:
"""Get the CUDA version from nvcc.
Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
"""
nvcc_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
universal_newlines=True)
output = nvcc_output.split()
release_idx = output.index("release") + 1
nvcc_cuda_version = parse(output[release_idx].split(",")[0])
return nvcc_cuda_version
# Collect the compute capabilities of all available GPUs.
device_count = torch.cuda.device_count()
compute_capabilities: Set[int] = set()
for i in range(device_count):
major, minor = torch.cuda.get_device_capability(i)
if major < 7:
raise RuntimeError(
"GPUs with compute capability less than 7.0 are not supported.")
compute_capabilities.add(major * 10 + minor)
# If no GPU is available, add all supported compute capabilities.
if not compute_capabilities:
compute_capabilities = {70, 75, 80, 86, 90}
# Add target compute capabilities to NVCC flags.
for capability in compute_capabilities:
NVCC_FLAGS += ["-gencode", f"arch=compute_{capability},code=sm_{capability}"]
# Validate the NVCC CUDA version.
nvcc_cuda_version = get_nvcc_cuda_version(CUDA_HOME)
if nvcc_cuda_version < Version("11.0"):
raise RuntimeError("CUDA 11.0 or higher is required to build the package.")
if 86 in compute_capabilities and nvcc_cuda_version < Version("11.1"):
raise RuntimeError(
"CUDA 11.1 or higher is required for GPUs with compute capability 8.6.")
if 90 in compute_capabilities and nvcc_cuda_version < Version("11.8"):
raise RuntimeError(
"CUDA 11.8 or higher is required for GPUs with compute capability 9.0.")
# Use NVCC threads to parallelize the build.
if nvcc_cuda_version >= Version("11.2"):
num_threads = min(os.cpu_count(), 8)
NVCC_FLAGS += ["--threads", str(num_threads)]
ext_modules = []
# Cache operations.
cache_extension = CUDAExtension(
name="vllm.cache_ops",
sources=["csrc/cache.cpp", "csrc/cache_kernels.cu"],
extra_compile_args={"cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS},
)
ext_modules.append(cache_extension)
# Attention kernels.
attention_extension = CUDAExtension(
name="vllm.attention_ops",
sources=[
"csrc/attention.cpp",
"csrc/attention/attention_kernels.cu",
"csrc/attention/attention_prev_kernels.cu",
"csrc/attention/attention_post_kernels.cu",
],
extra_compile_args={"cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS},
)
ext_modules.append(attention_extension)
# Positional encoding kernels.
positional_encoding_extension = CUDAExtension(
name="vllm.pos_encoding_ops",
sources=["csrc/pos_encoding.cpp", "csrc/pos_encoding_kernels.cu"],
extra_compile_args={"cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS},
)
ext_modules.append(positional_encoding_extension)
# Layer normalization kernels.
layernorm_extension = CUDAExtension(
name="vllm.layernorm_ops",
sources=["csrc/layernorm.cpp", "csrc/layernorm_kernels.cu"],
extra_compile_args={"cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS},
)
ext_modules.append(layernorm_extension)
# Activation kernels.
activation_extension = CUDAExtension(
name="vllm.activation_ops",
sources=["csrc/activation.cpp", "csrc/activation_kernels.cu"],
extra_compile_args={"cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS},
)
ext_modules.append(activation_extension)
def get_path(*filepath) -> str:
return os.path.join(ROOT_DIR, *filepath)
def find_version(filepath: str):
"""Extract version information from the given filepath.
Adapted from https://github.com/ray-project/ray/blob/0b190ee1160eeca9796bc091e07eaebf4c85b511/python/setup.py
"""
with open(filepath) as fp:
version_match = re.search(
r"^__version__ = ['\"]([^'\"]*)['\"]", fp.read(), re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
def read_readme() -> str:
"""Read the README file."""
return io.open(get_path("README.md"), "r", encoding="utf-8").read()
def get_requirements() -> List[str]:
"""Get Python package dependencies from requirements.txt."""
with open(get_path("requirements.txt")) as f:
requirements = f.read().strip().split("\n")
return requirements
setuptools.setup(
name="vllm",
version=find_version(get_path("vllm", "__init__.py")),
author="vLLM Team",
license="Apache 2.0",
description="A high-throughput and memory-efficient inference and serving engine for LLMs",
long_description=read_readme(),
long_description_content_type="text/markdown",
url="https://github.com/vllm-project/vllm",
project_urls={
"Homepage": "https://github.com/vllm-project/vllm",
"Documentation": "https://vllm.readthedocs.io/en/latest/",
},
classifiers=[
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"License :: OSI Approved :: Apache Software License",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
packages=setuptools.find_packages(
exclude=("assets", "benchmarks", "csrc", "docs", "examples", "tests")),
python_requires=">=3.8",
install_requires=get_requirements(),
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension},
)