Skip to content

Latest commit

 

History

History
107 lines (81 loc) · 3.84 KB

README.md

File metadata and controls

107 lines (81 loc) · 3.84 KB

ChatLogic

ChatLogic Framework

ChatLogic is a method that uses symbolic reasoning engines to augment the reasoning capabilities of large language models.

Before you start implementing this project, please follow the basic design process below.

Installation

conda create -n ChatLogic python=3.10
conda activate ChatLogic
git clone https://github.com/Strong-AI-Lab/ChatLogic.git
cd ChatLogic
pip install -r requirements.txt

File Structure

  • ChatLogic
    • call_openai_API.py # Call OPENAI’s GPT API
    • complete_reasoning_3.5.py # Complete the reasoning test fot GPT-3.5
    • complete_reasoning_4.py # Complete the reasoning test fot GPT-34
    • complete_reasoning_Llama2.py # Complete the reasoning test fot Llama2 7B
    • cwa_processing_animal.py
    • cwa_processing_people.py
    • PARARULE_Plus.py
    • pyDatalog_processing.py
    • README.md
    • requirements.txt
    • sample_extraction.py
    • templates.py
    • Ablation Study
      • Ablation_study_gpt3.5.py
      • Ablation_study_gpt4.py
      • Ablation_study_Llama2.py
    • Baseline Experiment
      • GPT3.5.py
      • GPT4.py
      • Llama2.py
      • Llama_2_7B_Finetune
        • Alpaca_data_processing.py
        • Fine-tune Llama2-7B.sh
        • get_data_PARARULE-Plus.py
        • prompt_processing.py
        • test_Llama2-7B_finetune.py
      • Zero-shot CoT
        • GPT-3.5.py
        • GPT-4.py
        • Llama 2-7B.py

Use LoRA to finetune Llama-2 7B

We have omitted this experimental process in the main text of the paper. It is saved here just to illustrate that this introductory tutorial still has certain practical significance, but it will not be used as a comparative experiment.

We use Stanford Alpaca paradigm to train the fine-tuned Llama2 model, you can see the specific operating specifications here.

The data set adjusted for Alpaca format is already visible on Huggingface ("ZhongshengWang/PARARULE-Plus-Alpaca").

Using the NVIDIA RTX3090 graphics card, the effect after 5h LoRA fine-tuning on 10,000 pieces of data (randomly extracted) is significantly improved compared to the native model.

Just create a random selected data (10,000 pieces) and save it to the file called "Alpaca_PARARULE-Plus.json" which in the same location of the git repo.

Shell command below. But you can also tweak our hyperparameters:

clone https://github.com/tloen/alpaca-lora.git

python finetune.py \
    --base_model 'meta-llama/Llama-2-7b-hf' \
    --data_path './Alpaca_PARARULE-Plus.json' \
    --output_dir './lora-alpaca' \
    --batch_size 128 \
    --micro_batch_size 4 \
    --num_epochs 5 \
    --learning_rate 1e-4 \
    --cutoff_len 512 \
    --val_set_size 2000 \
    --lora_r 8 \
    --lora_alpha 16 \
    --lora_dropout 0.05 \
    --lora_target_modules '[q_proj,v_proj]' \
    --train_on_inputs \
    --group_by_length

Quick Start

Before you start the reasoning using ChatGPT/GPT-4 set the global param in the environment configuration OPENAI_API_KEY="your_api_key"

Here we only use ChatGPT as the benchmark large language model for demonstration.

demo_ChatLogic.py is a code example specifically used to show the running process of ChatLogic. It contains a test data case extracted from PARARULE-Plus.

python demo_ChatLogic.py # this demo code contains a demo data for testing

The following is a more detailed mind mapping of ChatLogic: Detailed ChatLogic Framework

The picture below is a specific comparison. We use the performance of native ChatGPT (left) and ChatGPT enhanced by the ChatLogic framework (right) to compare. Detailed ChatLogic Framework