-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
117 lines (89 loc) · 3.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
'''
@author: Suyash Sonawane [github/suyashsonawane]
This is a python script for generating / training the model on the training data in the `data` folder
Logs will be written in the `logs` and the improved weights will stored in the `weights` folder
'''
import pandas as pd # For loading data
import numpy as np # For preprocessing data
import tensorflow as tf # For DL
from tensorflow.keras.models import Sequential # For creating a sequential model
from tensorflow.keras.layers import Dense # layers
from tensorflow.keras.layers import Dropout # layers
from tensorflow.keras.layers import LSTM # layers
# For saving weights and other callbacks
from tensorflow.keras.callbacks import ModelCheckpoint
import joblib # For dumping preprocessing parameters
dfs = []
cols = []
# list of the named columns for the position data
poseList = [
"nose",
"leftShoulder",
"rightShoulder",
"leftElbow",
"rightElbow",
"leftWrist",
"rightWrist",
"leftHip",
"rightHip",
"leftKnee",
"rightKnee",
"leftAnkle",
"rightAnkle",
]
# Each data point has x and y co-ordinates so we added extra cols for them
for pose in poseList:
cols.append(f"{pose}-x")
cols.append(f"{pose}-y")
# Reading data from csv, here there are 6 files in the data folder you can change file names and number here
for i in range(1, 6):
dfs.append(pd.read_csv(f"data/dance_download{i}.csv", header=None))
# Merging all the data and assigning columns.
df = pd.concat(dfs)
df.columns = cols
data = df.copy()
# Preprocessing data
data = np.array(data)
d_mean = data.mean(axis=0)
d_std = data.std(axis=0)
# saving the mean and std of data
joblib.dump(d_mean, "data/data_mean")
joblib.dump(d_std, "data/data_std")
data = (data-d_mean)/d_std
# Maximum timesteps feed into the LSTM
seq_length = 5
dataX = []
dataY = []
# Generating sequences of the data
for i in range(0, len(data) - seq_length, 1):
seq_in = data[i:i + seq_length]
seq_out = data[i + seq_length]
dataX.append(seq_in)
dataY.append(seq_out)
n_patterns = len(dataX)
print("Total Patterns: ", n_patterns)
joblib.dump(dataX, "data/dataX")
# Reshaping and batching data
X = np.reshape(dataX, (n_patterns, seq_length, 26))
y = np.array(dataY)
y = y.reshape((-1, 26))
# Creating model
model = Sequential()
model.add(LSTM(512, input_shape=(
X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(512))
model.add(Dropout(0.2))
model.add(Dense(y.shape[1], activation='linear'))
model.compile(loss=tf.keras.losses.mean_squared_error, optimizer='rmsprop')
model.summary() # prints the model summary
# File path for saving weights
filepath = "weights/weights-improvement-{epoch:02d}-{loss:.4f}.hdf5"
# Callback for saving weights
checkpoint = ModelCheckpoint(
filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
# Callback for creating logs
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="logs")
callbacks_list = [checkpoint, tensorboard_callback]
# Fitting / training the model
model.fit(X, y, epochs=1000, batch_size=128, callbacks=callbacks_list)