-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdemon.py
108 lines (89 loc) · 4.24 KB
/
demon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Copyright (c) 2019 luozw, Inc. All Rights Reserved
Authors: luozhiwang([email protected])
Date: 2019-09-24
"""
import os
import cv2
import time
import tensorflow as tf
from core.infer.visual_utils import get_results, draw_point, draw_skeleton
def read_pb(pb_path, input_node_name_and_val, output_node_name):
"""
:param pb_path:
:param input_node_name_and_val: {(str) input_node_name: (any) input_node_val}
:param output_node_name: [(str) output_node_name]
:return: [output]
"""
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
with open(pb_path, 'rb') as f:
output_graph_def.ParseFromString(f.read())
tf.import_graph_def(output_graph_def, name='')
config = tf.ConfigProto(allow_soft_placement=True) # 是否自动选择GPU
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# sess.run(tf.global_variables_initializer())
# 定义输入的张量名称,对应网络结构的输入张量
# input:0作为输入图像,keep_prob:0作为dropout的参数,测试时值为1,is_training:0训练参数
feed_dict = {}
for key in input_node_name_and_val:
input_tensor = sess.graph.get_tensor_by_name(key)
feed_dict[input_tensor] = input_node_name_and_val[key]
# 定义输出的张量名称
output_tensor = []
for name in output_node_name:
output_tensor.append(sess.graph.get_tensor_by_name(name))
# 测试读出来的模型是否正确,注意这里传入的是输出和输入节点的tensor的名字,不是操作节点的名字
start_time = time.time()
output = sess.run(output_tensor, feed_dict=feed_dict)
print('Infer time is %.4f' % (time.time() - start_time))
return output
if __name__ == '__main__':
import numpy as np
from core.dataset.data_generator import Dataset
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
pb_path = 'Hourglass.pb'
# pb_path = 'tensorRT/TensorRT.pb'
img_dir = '/data/dataset/coco/images/val2017'
gt_path = 'data/dataset/coco/coco_val.txt'
batch_size = 8
img_size = (512,512)
hm_size = (128,128)
dataset = Dataset(img_dir, gt_path, batch_size, None, img_size, hm_size)
it = dataset.iterator(4, False)
image, hm = next(it)
image_norm = (image / 127.5) - 1
input_dict = {'Placeholder/inputs_x:0': image_norm}
output_node_name=['Keypoints/keypoint_1/conv/Sigmoid:0']
outputs = read_pb(pb_path, input_dict, output_node_name)
for k in range(len(outputs)):
# outputs[k] = sigmoid(outputs[k])
points = get_results(outputs[k], 0.3)
gt_points = get_results(hm, 0.3)
print(points)
print(gt_points)
for i in range(len(points)):
img = image[i][:, :, ::-1]
for j in range(len(points[i])):
if points[i][j][0] != -1:
points[i][j][0] = int(points[i][j][0]/hm_size[1]*img.shape[1])
if points[i][j][1] != -1:
points[i][j][1] = int(points[i][j][1]/hm_size[0]*img.shape[0])
for j in range(len(gt_points[i])):
if gt_points[i][j][0] != -1:
gt_points[i][j][0] = int(gt_points[i][j][0]/hm_size[1]*img.shape[1])
if gt_points[i][j][1] != -1:
gt_points[i][j][1] = int(gt_points[i][j][1]/hm_size[0]*img.shape[0])
one_ouput = np.sum(outputs[k][i], axis=-1, keepdims=True) * 255
tile_output = np.tile(one_ouput, (1, 1, 3))
tile_img =cv2.resize(tile_output, img_size) + img
cv2.imwrite('render_img/'+str(i)+'_'+str(k)+'_origin.jpg', img)
cv2.imwrite('render_img/'+str(i)+'_'+str(k)+'_hm.jpg', tile_img)
sk_img = draw_skeleton(img, points[i],'coco')
cv2.imwrite('render_img/' + str(i) + '_' + str(k) + '_skeleton.jpg', sk_img)
img = draw_skeleton(img, gt_points[i],'coco')
cv2.imwrite('render_img/'+str(i)+'_'+str(k)+'_visible.jpg', img)
# outputs[k]