-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhrda_encoder_decoder.py
268 lines (240 loc) · 10.2 KB
/
hrda_encoder_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
import numpy as np
import torch
from mmseg.ops import resize
from ..builder import SEGMENTORS
from .encoder_decoder import EncoderDecoder
def get_crop_bbox(img_h, img_w, crop_size, divisible=1):
"""Randomly get a crop bounding box."""
assert crop_size[0] > 0 and crop_size[1] > 0
if img_h == crop_size[-2] and img_w == crop_size[-1]:
return (0, img_h, 0, img_w)
margin_h = max(img_h - crop_size[-2], 0)
margin_w = max(img_w - crop_size[-1], 0)
offset_h = np.random.randint(0, (margin_h + 1) // divisible) * divisible
offset_w = np.random.randint(0, (margin_w + 1) // divisible) * divisible
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]
return crop_y1, crop_y2, crop_x1, crop_x2
def crop(img, crop_bbox):
"""Crop from ``img``"""
crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox
if img.dim() == 4:
img = img[:, :, crop_y1:crop_y2, crop_x1:crop_x2]
elif img.dim() == 3:
img = img[:, crop_y1:crop_y2, crop_x1:crop_x2]
elif img.dim() == 2:
img = img[crop_y1:crop_y2, crop_x1:crop_x2]
else:
raise NotImplementedError(img.dim())
return img
@SEGMENTORS.register_module()
class HRDAEncoderDecoder(EncoderDecoder):
last_train_crop_box = {}
def __init__(self,
backbone,
decode_head,
neck=None,
auxiliary_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
init_cfg=None,
scales=[1],
hr_crop_size=None,
hr_slide_inference=True,
hr_slide_overlapping=True,
crop_coord_divisible=1,
blur_hr_crop=False,
feature_scale=1):
self.feature_scale_all_strs = ['all']
if isinstance(feature_scale, str):
assert feature_scale in self.feature_scale_all_strs
scales = sorted(scales)
decode_head['scales'] = scales
decode_head['enable_hr_crop'] = hr_crop_size is not None
decode_head['hr_slide_inference'] = hr_slide_inference
super(HRDAEncoderDecoder, self).__init__(
backbone=backbone,
decode_head=decode_head,
neck=neck,
auxiliary_head=auxiliary_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
pretrained=pretrained,
init_cfg=init_cfg)
self.scales = scales
self.feature_scale = feature_scale
self.crop_size = hr_crop_size
self.hr_slide_inference = hr_slide_inference
self.hr_slide_overlapping = hr_slide_overlapping
self.crop_coord_divisible = crop_coord_divisible
self.blur_hr_crop = blur_hr_crop
def extract_unscaled_feat(self, img):
x = self.backbone(img)
if self.with_neck:
x = self.neck(x)
return x
def extract_slide_feat(self, img):
if self.hr_slide_overlapping:
h_stride, w_stride = [e // 2 for e in self.crop_size]
else:
h_stride, w_stride = self.crop_size
h_crop, w_crop = self.crop_size
bs, _, h_img, w_img = img.size()
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
crop_imgs, crop_feats, crop_boxes = [], [], []
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_imgs.append(img[:, :, y1:y2, x1:x2])
crop_boxes.append([y1, y2, x1, x2])
crop_imgs = torch.cat(crop_imgs, dim=0)
crop_feats = self.extract_unscaled_feat(crop_imgs)
# shape: feature levels, crops * batch size x c x h x w
return {'features': crop_feats, 'boxes': crop_boxes}
def blur_downup(self, img, s=0.5):
img = resize(
input=img,
scale_factor=s,
mode='bilinear',
align_corners=self.align_corners)
img = resize(
input=img,
scale_factor=1 / s,
mode='bilinear',
align_corners=self.align_corners)
return img
def resize(self, img, s):
if s == 1:
return img
else:
with torch.no_grad():
return resize(
input=img,
scale_factor=s,
mode='bilinear',
align_corners=self.align_corners)
def extract_feat(self, img):
if self.feature_scale in self.feature_scale_all_strs:
mres_feats = []
for i, s in enumerate(self.scales):
if s == 1 and self.blur_hr_crop:
scaled_img = self.blur_downup(img)
else:
scaled_img = self.resize(img, s)
if self.crop_size is not None and i >= 1:
scaled_img = crop(
scaled_img, HRDAEncoderDecoder.last_train_crop_box[i])
mres_feats.append(self.extract_unscaled_feat(scaled_img))
return mres_feats
else:
scaled_img = self.resize(img, self.feature_scale)
return self.extract_unscaled_feat(scaled_img)
def encode_decode(self, img, img_metas):
"""Encode images with backbone and decode into a semantic segmentation
map of the same size as input."""
mres_feats = []
self.decode_head.debug_output = {}
for i, s in enumerate(self.scales):
if s == 1 and self.blur_hr_crop:
scaled_img = self.blur_downup(img)
else:
scaled_img = self.resize(img, s)
if i >= 1 and self.hr_slide_inference:
mres_feats.append(self.extract_slide_feat(scaled_img))
else:
mres_feats.append(self.extract_unscaled_feat(scaled_img))
if self.decode_head.debug:
self.decode_head.debug_output[f'Img {i} Scale {s}'] = \
scaled_img.detach()
out = self._decode_head_forward_test(mres_feats, img_metas)
out = resize(
input=out,
size=img.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
return out
def _forward_train_features(self, img):
mres_feats = []
self.decode_head.debug_output = {}
assert len(self.scales) <= 2, 'Only up to 2 scales are supported.'
prob_vis = None
for i, s in enumerate(self.scales):
if s == 1 and self.blur_hr_crop:
scaled_img = self.blur_downup(img)
else:
scaled_img = resize(
input=img,
scale_factor=s,
mode='bilinear',
align_corners=self.align_corners)
if self.crop_size is not None and i >= 1:
crop_box = get_crop_bbox(*scaled_img.shape[-2:],
self.crop_size,
self.crop_coord_divisible)
if self.feature_scale in self.feature_scale_all_strs:
HRDAEncoderDecoder.last_train_crop_box[i] = crop_box
self.decode_head.set_hr_crop_box(crop_box)
scaled_img = crop(scaled_img, crop_box)
if self.decode_head.debug:
self.decode_head.debug_output[f'Img {i} Scale {s}'] = \
scaled_img.detach()
mres_feats.append(self.extract_unscaled_feat(scaled_img))
return mres_feats, prob_vis
def forward_train(self,
img,
img_metas,
gt_semantic_seg,
seg_weight=None,
return_feat=False,
return_seg_loss=True):
"""Forward function for training.
Args:
img (Tensor): Input images.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:Collect`.
gt_semantic_seg (Tensor): Semantic segmentation masks
used if the architecture supports semantic segmentation task.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
losses = dict()
mres_feats, prob_vis = self._forward_train_features(img)
for i, s in enumerate(self.scales):
if return_feat and self.feature_scale in \
self.feature_scale_all_strs:
if 'features' not in losses:
losses['features'] = [[]]
losses['features'][0].append(mres_feats[i])
if return_feat and s == self.feature_scale:
losses['features'] = [mres_feats[i]]
break
if return_seg_loss or return_feat:
loss_decode, decoder_feats = self._decode_head_forward_train(mres_feats,
img_metas,
gt_semantic_seg,
seg_weight)
if return_seg_loss:
losses.update(loss_decode)
if return_feat:
losses['features'].extend(decoder_feats)
if self.decode_head.debug and prob_vis is not None:
self.decode_head.debug_output['Crop Prob.'] = prob_vis
if self.with_auxiliary_head:
raise NotImplementedError
return losses
def forward_with_aux(self, img, img_metas):
assert not self.with_auxiliary_head
mres_feats, _ = self._forward_train_features(img)
out = self.decode_head.forward(mres_feats)
return {'main': out}