-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrainer.py
198 lines (159 loc) · 7.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""
Author: Vaishakh Patil
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import argparse
import os
from datetime import datetime
import sys
import random
import numpy as np
import torch
from omegaconf import OmegaConf, DictConfig, open_dict
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from src.data import define_dataset
from src.litmodel import DepthLitModel
from src.utils import load_config, print_config,update_config, check_machine, create_eval_dirs
from src.callback import DepthPredictionLogger
WANDB_PJ_NAME = 'p3depth'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Train a predictor')
parser.add_argument('--config', type=str, default=None,
help='Optional config path. `configs/default.yaml` is loaded by default.')
parser.add_argument('--model_config', type=str, default=None)
parser.add_argument('--dataset_config', type=str, default=None)
parser.add_argument('--exp_config', type=str, default=None)
parser.add_argument('--resume', type=str, default=None, help='the checkpoint file to resume from')
group = parser.add_mutually_exclusive_group()
group.add_argument('--gpu-ids', type=int, default=None, nargs='+')
group.add_argument('--n_gpu', type=int, default=None)
parser.add_argument("--amp", default=None, help="amp opt level", choices=['O1', 'O2', 'O3'])
parser.add_argument("--profiler", default=None, help="'simple' or 'advanced'", choices=['simple', 'advanced'])
parser.add_argument("--debug", action="store_true")
parser.add_argument("--test", action="store_true")
# parser.add_argument("--test_path", type=str, default=None, help='test checkpoint path.')
parser.add_argument("--data_dir", type=str, default=None, help='data path euler.')
parser.add_argument("--out_dir", type=str, default=None, help='output path euler.')
parser.add_argument('opts', default=None, nargs=argparse.REMAINDER,
help='Overwrite configs. (ex. OUTPUT_DIR=results, SOLVER.NUM_WORKERS=8)')
return parser.parse_args()
def get_gpus(args: argparse.Namespace):
if args.gpu_ids is not None:
gpus = args.gpu_ids
elif args.n_gpu is not None:
gpus = args.n_gpu
else:
gpus = 1
gpus = gpus if torch.cuda.is_available() else None
return gpus
def get_trainer(args: argparse.Namespace, config: DictConfig, dataloader) -> Trainer:
# amp
precision = 16 if args.amp is not None else 32
WANDB_PJ_NAME = config.DATASET.TYPE if config.DATASET.TYPE != '' else WANDB_PJ_NAME
# logger
if not args.debug:
os.makedirs(config.OUTPUT_DIR, exist_ok=True)
wandb_logger = WandbLogger(project=WANDB_PJ_NAME, save_dir=config.OUTPUT_DIR, name=config.EXP_NAME)
wandb_logger.log_hyperparams(OmegaConf.to_container(config))
else:
print("Running in DEBUG Mode...")
# print("Dataloader samples reduced to 500...")
wandb_logger = False
# checkpoint
checkpoint_callback = ModelCheckpoint(filename='{epoch:03d}-{rmse:.3f}-{delta1:.3f}',
save_top_k=1, monitor='delta1', mode='max')
# Samples required by the custom DepthPredictionLogger callback to log predictions.
num_samples = 10
val_samples = {}
for idx in range(0, num_samples):
dict = next(iter(dataloader.val_dataloader(shuffle=True)))
for key, value in dict.items():
if idx == 0:
val_samples[key] = [dict[key]]
else:
val_samples[key].append(dict[key])
return Trainer(
max_epochs=config.SOLVER.EPOCH,
callbacks=[checkpoint_callback, DepthPredictionLogger(config, val_samples, num_samples)],
resume_from_checkpoint=args.resume,
default_root_dir=config.OUTPUT_DIR,
gpus= get_gpus(args),
profiler=args.profiler,
logger=wandb_logger,
precision=precision,
amp_level=args.amp,
auto_select_gpus=True,
# gradient_clip_val=1.0,
#auto_scale_batch_size='binsearch',
#progress_bar_refresh_rate=2
#fast_dev_run=args.debug
), wandb_logger
def main():
args = parse_args()
# config
config: DictConfig = load_config(args.config, args.model_config, args.dataset_config, args.exp_config, update_dotlist=args.opts)
# Change paths based on machine
config: DictConfig = check_machine( config, args.data_dir, args.out_dir)
# modules
LitDataModule = define_dataset(config.DATASET.TYPE, config)
## REPRODUCIBILITY
torch.manual_seed(config.SEED)
random.seed(config.SEED)
np.random.seed(config.SEED)
# torch.use_deterministic_algorithms(True)
if args.test:
MAIN_EVAL_DIR, _ = os.path.split(config.CKPT_PATH)
EVAL_DIR = os.path.join(MAIN_EVAL_DIR, 'eval')
config: DictConfig = update_config(config, ["EVAL_DIR=" + EVAL_DIR])
model = DepthLitModel.load_from_checkpoint(config.CKPT_PATH, config=config)
trainer = Trainer(gpus=get_gpus(args), default_root_dir=config.OUTPUT_DIR)
print('Saving result to folder..'+ EVAL_DIR)
create_eval_dirs(EVAL_DIR, config)
print_config(config)
trainer.test(model, test_dataloaders=LitDataModule.val_dataloader(eval=True))
else:
## Create experiment dir with timestamp
TIMESTAMP = datetime.now().strftime('%d_%m_%Y-%H%M%S')
CFG_NAME=''
if args.exp_config is not None:
head, tail = os.path.split(args.exp_config)
CFG_NAME = tail[:-5]
EXP_NAME = config.MODEL.TYPE + "_" + config.MODEL.BACKBONE + "_" + TIMESTAMP + "_" + CFG_NAME
OUTPUT_DIR = os.path.join(config.OUTPUT_DIR, EXP_NAME+ "_" + config.DATASET.TYPE)
config: DictConfig = update_config(config, ["EXP_NAME=" + EXP_NAME, "OUTPUT_DIR=" + OUTPUT_DIR])
print_config(config)
trainer, wandb_logger = get_trainer(args, config, LitDataModule)
model = DepthLitModel(config)
if config.RESUME != '':
print("=> using pre-trained model '{}'".format(config.RESUME))
# model = model.load_from_checkpoint(config.RESUME, strict=False)
pretrained_state = torch.load(config.RESUME)["state_dict"]
model_state = model.state_dict()
pretrained_state = {k: v for k, v in pretrained_state.items() if k in model_state and v.size() == model_state[k].size()}
model.load_state_dict(pretrained_state, strict=False)
# model_state = model.state_dict()
# # # ignore_keys = ["epoch", "global_step",
# # # "pytorch-lightning_version",
# # # "state_dict", "callbacks",
# # # "optimizer_states", "lr_schedulers",
# # # "hparams_name", "hyper_parameters"]
# # for k, v in pretrained_state.items():
# # if k in model_state: # v.size() == model_state[k].size():
# # pretrained_state[k] = v
#
# keep_keys = [ "state_dict"]
# pretrained_state = {k: v for k, v in pretrained_state.items() if
# k in model_state and v.size() == model_state[k].size() and k in keep_keys}
# print(pretrained_state)
# model_state.update(pretrained_state)
# model.load_state_dict(model_state)
#if not args.debug:
# wandb_logger.watch(model, log='all')
print("In train loop....")
# trainer.tune(model, LitDataModule)
trainer.fit(model, LitDataModule)
if __name__ == "__main__":
main()