- Linux (Ubuntu)
- Python: 3.8.13
- PyTorch: 1.11 (with CUDA 11.3, torchvision 0.12.0)
- PyTorch Lightning: 1.6.5
- Install the prerequisites
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt
- Prepare these directories under the disk with large storage for dataset, checkpoints and visualization.
mkdir ${ASSET_DIR}
mkdir ${WORK_DIR}
cd ${ASSET_DIR}
mkdir data
-
Our code will use
asset_dirs
andwork_dirs
under the repo root by default as${ASSET_DIR}
and${WORK_DIR}
, so you might need to symlink them correctly or change the behavior with the config. -
The experimental results will be saved under
${WORK_DIR}/${EXP_NAME}/${VERSION}
. You need to specify the experiment name${EXP_NAME}
and we will use the timestamp as the version name${VERSION}
if you do not config it for every experiment.
-
We use Inplace ABN for most of our experiments.
-
Please install it with the latest version.
git clone https://github.com/mapillary/inplace_abn.git
cd inplace_abn
python setup.py install
-
We use the offset provided from Seg Fix to do the post-processing for our Cityscapes final results.
-
Download the
offset_semantic.zip
file. Unzip, and place (or symlink) the data as below.
${ASSET_DIR}
└── data
└── Cityscapes
├── leftImg8bit_trainvaltest
├── gtFine_trainvaltest
├── leftImg8bit_trainextra
├── gtCoarse
├── refinement
└── offset_semantic
├── val
└── test_offset