To reproduce the results in the paper , you will need to setup these datasets.
-
First of all, please request the dataset from here. You need multiple files.
- leftImg8bit_trainvaltest.zip
- gtFine_trainvaltest.zip
- leftImg8bit_trainextra.zip
- gtCoarse.zip
-
If you prefer to use command lines (e.g.,
wget
) to download the dataset,
# First step, obtain your login credentials.
Please register an account at https://www.cityscapes-dataset.com/login/.
# Second step, log into cityscapes system, suppose you already have a USERNAME and a PASSWORD.
wget --keep-session-cookies --save-cookies=cookies.txt --post-data 'username=USERNAME&password=PASSWORD&submit=Login' https://www.cityscapes-dataset.com/login/
# Third step, download the zip files you need.
wget -c -t 0 --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=3
# The corresponding packageID is listed below,
1 -> gtFine_trainvaltest.zip (241MB) md5sum: 4237c19de34c8a376e9ba46b495d6f66
2 -> gtCoarse.zip (1.3GB) md5sum: 1c7b95c84b1d36cc59a9194d8e5b989f
3 -> leftImg8bit_trainvaltest.zip (11GB) md5sum: 0a6e97e94b616a514066c9e2adb0c97f
4 -> leftImg8bit_trainextra.zip (44GB) md5sum: 9167a331a158ce3e8989e166c95d56d4
-
Download the auto-labeled coarse data provided by NVIDIA
-
Unzip, and place (or symlink) the data as below.
${ASSET_DIR}
└── data
└── Cityscapes
├── leftImg8bit_trainvaltest
| └── leftImg8bit
| ├── train
| | ├── aachen
| | | ├── aachen_000000_000019_leftImg8bit.png
| | | ├── aachen_000001_000019_leftImg8bit.png
| | | ├── ...
| | ├── bochum
| | ├── ...
| ├── val
| └── test
├── gtFine_trainvaltest
| └── gtFine
| ├── train
| | ├── aachen
| | | ├── aachen_000000_000019_gtFine_color.png
| | | ├── aachen_000000_000019_gtFine_instanceIds.png
| | | ├── aachen_000000_000019_gtFine_labelIds.png
| | | ├── aachen_000000_000019_gtFine_polygons.json
| | | ├── ...
| | ├── bochum
| | ├── ...
| ├── val
| └── test
├── leftImg8bit_trainextra
| └── leftImg8bit
| ├── train_extra
| | ├── augsburg
| | ├── bad-honnef
| | ├── ...
├── gtCoarse
| └── gtCoarse
| ├── train
| ├── train_extra
| └── val
└── refinement
└── train_extra
├── augsburg
├── bad-honnef
├── ...
-
First of all, please request the dataset from here. Download
Images
andSegmentation
. The downloaded files arebdd100k_images.zip
andbdd100k_sem_seg_labels_trainval.zip
. -
Unzip, and place (or symlink) the data as below.
${ASSET_DIR}
└── data
└── bdd100k
├── images
| └── 10k
| ├── train
| ├── ├── 0004a4c0-d4dff0ad.jpg
| ├── ├── 00054602-3bf57337.jpg
| ├── ├── ...
| ├── val
| └── test
└── labels
└──sem_seg
├── colormaps
| ├── train
| └── val
├── masks
└── polygons
- We use the BSDS500, PASCAL VOC Context, and NYUDv2 datasets. You can obtain augmented versions of the datasets following the instructions in the RCF repository.
- Untar the datasets and place (or symlink) the data as below.
${ASSET_DIR}
└── data
├── BSDS500
| ├── HED-BSDS
| | ├── train_pair.lst
| | ├── test_pair.lst
| | ├── train
| | | └── ...
| | └── test
| | └── ...
| └── PASCAL
| ├── train_pair.lst
| ├── aug_data
| | └── ...
| └── aug_gt
| └── ...
└── NYUD
├── image-train.lst
├── image-test.lst
├── hha-train.lst
├── hha-test.lst
├── train
| ├── GT
| | └── ...
| ├── HHA
| | └── ...
| └── Images
| └── ...
└── test
├── HHA
| └── ...
└── Images
└── ...