-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshowGainKernelsByCue_pop.m
178 lines (144 loc) · 5.77 KB
/
showGainKernelsByCue_pop.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
%% shot tonset resp w/wo cue of selected functional cell types, detected in pickUnitsByClass.m
[saveServer, rootFolder] = getReady();
load(fullfile(saveServer,'param20230405.mat'),'param');
dataDir = '/mnt/syncitium/Daisuke/cuesaccade_data/figPSTH_pop20231026hugo/';
animal = 'hugo';%'ollie';%'andy';% 'andy' '
%% load gain info <> avg tgt resp [HACK]
load(fullfile(dataDir, 'fitPSTH_pop20231026hugo.mat'),...
'gainInfo_pop','id_pop','kernel_pop');
%% load kernel info from tgt units
gainKernelName = fullfile(dataDir, 'gainkernel_splt_all.mat');
if exist(gainKernelName, 'file')
load(gainKernelName);
else
id_all = cell(1);
kernel_splt_all = cell(1,10);
prefDir_all = [];
iii=1;
for yyy = 1:3
switch yyy
case 1
year = '2021';
case 2
year = '2022';
case 3
year = '2023';
end
[loadNames, months, dates, channels] = getMonthDateCh(animal, year, rootFolder);
saveName_splt_pop = [];
for idata = 1:numel(channels)
datech = [months{idata} filesep dates{idata} filesep num2str(channels{idata})];
disp([year ': ' num2str(idata) '/' num2str(numel(channels)) ', ' datech ]);
saveFolder = fullfile(saveServer, year,animal);%17/6/23
saveSuffix = [animal replace(datech,filesep,'_') '_linear_rReg'];
saveName_splt = fullfile(saveFolder, [saveSuffix '_splitPredictor.mat']);
if exist(saveName_splt,'file')
try
thisKernelInfo = load(saveName_splt, 'kernelInfo');
kernel_splt_all(iii,1:10) = thisKernelInfo.kernelInfo.kernel;
prefDir_kernel(iii)
thisid = [animal '/' year '/' datech];
%% load avg resp to tgt
[~, thisIDidx] = intersect(id_pop, thisid);
if ~isempty(thisIDidx)
avgResp_all(:,:,:,iii) = squeeze(gainInfo_pop(thisIDidx).avgTonsetByCue(:,1,:,:));
prefDir_all(iii) = gainInfo_pop(thisIDidx).prefDir;
end
id_all{iii} = thisid;
iii = iii+1;
catch err
disp(err);
continue;
end
end
end
end
winSamps = gainInfo_pop(1).winSamps;
tlags = thisKernelInfo.kernelInfo.tlags;
save(gainKernelName, 'kernel_splt_all','avgResp_all','prefDir_all','id_all','winSamps','tlags');
end
%% tgt units
load(fullfile(dataDir, 'pickUnitsByClass.mat'),"funcClass",'nUnits');
for itgt = 1:5
switch itgt
case 1
tgtModality = 'vision';
tgtID = funcClass.id_v;
case 2
tgtModality = 'eyeSpeed';
tgtID = funcClass.id_es;
case 3
tgtModality = 'eyePosition';
tgtID = funcClass.id_ep;
case 4
tgtModality = 'integrator';
tgtID = funcClass.id_i;
case 5
tgtModality = 'all';
tgtID = funcClass.id_all;
end
%thisid = [animal '/' year '/' datech];
%tgtUnits_s = cellfun(@(y)(replace(y,filesep,'_')), tgtUnits);
[~,tgtIDidx] = intersect(id_all, tgtID);
%[~,tgtIDidx_g] = intersect(id_pop, tgtID);
%kernel_pop: {units kernelType}
kernel_splt_selected = kernel_splt_all(tgtIDidx,:)';
avgResp_selected = avgResp_all(:,:,:,tgtIDidx);
prefDir_selected = prefDir_all(tgtIDidx);
%% show average kernel before centering
[f, kernel_avg] = showKernelByCue(kernel_splt_selected, tlags, param.cardinalDir, 0);
screen2png( ['avgKernel_' animal '_' tgtModality]);
%% centerring by preferred direction
tgtRange = [0.05 0.15; ... %vision
0.03 0.25; ... %eye speed
-0.1 0.1]; %eye position
[f, kernel_centered_avg, prefKernelDir] = showKernelByCue(kernel_splt_selected, tlags, param.cardinalDir, 1, tgtRange);
screen2png(['avgKernel_centered_' animal '_' tgtModality ]);
%% show individual resp
mResp = squeeze(mean(avgResp_selected,4));
seResp = squeeze(ste(avgResp_selected,4));
dir0 = 1;
dir180 = 5;
figure('position',[0 0 1800 1200]);
ax3(1)=subplot(321);
boundedline(winSamps, squeeze(mResp(dir180,:,1)), squeeze(seResp(dir180,:,1)),'k','transparency',.5);
boundedline(winSamps, squeeze(mResp(dir0,:,1)), squeeze(seResp(dir0,:,1)),'transparency',.5);
title('wo cue'); grid on;
ax3(2)=subplot(322);
boundedline(winSamps, squeeze(mResp(dir180,:,2)), squeeze(seResp(dir180,:,2)),'k','transparency',.5);
boundedline(winSamps, squeeze(mResp(dir0,:,2)), squeeze(seResp(dir0,:,2)),'transparency',.5);
title('w cue');legend('180deg','0deg','location','northwest');
linkaxes(ax3); grid on;
%% show avg response to tgt stim before centering
for icue = 1:2
ax1(icue)=subplot(3,2,icue+2);
imagesc(winSamps, param.cardinalDir, squeeze(mean(avgResp_selected(:,:,icue,:),4)));
hline;vline;
if icue==1
ylabel('target direction');
title('wo cue');
elseif icue==2
title('w cue');
end
end
linkcaxes(ax1);
mcolorbar;
%% show avg response to tgt stim after centering
avgResp_selected_centered = [];
for iunit = 1:size(avgResp_selected,4)
[avgResp_selected_centered(:,:,:,iunit), dirAxis] = dealRespByCue(avgResp_selected(:,:,:,iunit), 1, 0, ...
prefDir_selected(iunit), param.cardinalDir);
end
for icue = 1:2
ax2(icue)=subplot(3,2,icue+4);
imagesc(winSamps, dirAxis, squeeze(nanmean(avgResp_selected_centered(:,:,icue,:),4)));
hline;vline;
if icue==1
ylabel('centered direction');
end
end
linkcaxes(ax2);
mcolorbar;
screen2png(['avgResp_' animal '_' tgtModality ]);
close all;
end