
MATLAB Programming Style

Requirements

Prepared by Peter Gagarinov

Moscow State University by M.V. Lomonosov

Faculty of Applied Mathematics and Computer Science

System Analysis Department

12 October, 2012

1. Introduction Page 1

1 Introduction

This document is mainly based on [1] with some modi�cations added that make sense
in the area of collaboration programming, creation of large MATLAB-based/scienti�cally
intensive applications, large sharable libraries of /C++ functions. Most of the changes
came from personal experience as MATLAB programmer.

2 Naming Conventions

In contrast to [1] naming convention described in this paper is more detailed as it is
required for creation of sharable code.

2.1 Variables

The names of variables should document their meaning or use.

2.1.1 Variable names should be in mixed case starting with lower case.

This is common practice in the C++ development community. MathWorks sometimes
starts variable names with upper case, but that usage is commonly reserved for types or
structures in other languages. midPrice,meanDev,indAsset,isAssetExpired

An alternative technique is to use underscore to separate parts of a compound variable
name. This technique, although readable, is not commonly used for variable names in
other languages and is not recommended by the author.

2.1.2 Variables with a large scope should have more meaningful names. Vari-
ables with a small scope can have short but still meaningful names.

In practice most variables should have meaningful names. The use of short names should
be reserved for conditions where they clarify the structure of the statements. Scratch
variables used for temporary storage or indices can be kept short but still meaningful,
like ind,isAsset instead of indPair,isAssetExpired. Using of common scratch
variables i,j,k,m,n for integers and x,y for doubles is not recommended, especially
considering the fact that i,j are the constants in MATLAB

2.1.3 The pre�x n should be used for variables representing the number of
objects.

This notation is taken from mathematics where it is an established convention for in-
dicating the number of objects. Example: nFiles,nSegments,nAssets,nCols. A
MATLAB-speci�c addition is the use of m for number of rows (based on matrix notation),
as in mRows.

2.1.4 A convention on pluralization should be followed consistently.

A suggested practice is to make all variable names either singular or plural. Having
two variables like nDays,nDay,nAsset,nAssets with names di�ering only by a �nal
letter s should be avoided.

MSU, System Analysis Department

2.1 Variables Page 2

2.1.5 A convention on dimensionality should be followed consistently.

Use the su�ces for indicating the dimensionality of the variables, namely Vec(CVec)
for numeric (cell) vectors Mat(CMat) for numeric (cell) matrices, Array(CArray) for
multi-dimentional numeric (cell) arrays: point,pointMat where point is singular and
pointMat is plural.

2.1.6 Iterator variables should be pre�xed with i, j, k etc.

The notation is taken from mathematics where it is an established convention for indi-
cating iterators.

1 for iFile = 1:nFiles
2 ...
3 end

For nested loops the iterator variables also should have helpful names.

1 %start cycle along assets
2 for iAssets = 1:nAssets
3 %start cycle along metrics
4 for jMetrics = 1:nMetrics
5 ...
6 end
7 end

2.1.7 Logical matrices should be pre�xed with is(isn),index matrices should
be pre�xed with ind

Most of indexing job can be done by using either integer indeces or logical indeces. In
order to distinguish such variables being used in the same part of the code use names like
indAssetExpired, indMaxMaturity, indMaxElem for arrays of integer indeces
and names like isAssetExpired,isMaxMaturity,isMaxElem for logical arrays. In
that way it is possible to use both versions (logical and integer) simultaneously. For
negated logical variables tend to use pre�x isn instead of isNot as it make the code
more compact: isnMaxElem, isnNan.

Indexation example

1 %initial parameters
2 nCols=10;
3 nRows=11;
4 %simulate data
5 randMat=rand(nRows,nCols);
6 %calculate indeces
7 isPositive=randMat>0; indPositive=find(isPositive);
8 %calculate number of positive elements: method #1
9 nPositive=sum(isPositive);

MSU, System Analysis Department

2.2 Structures Page 3

10 %%calculate number of positive elements: method #2
11 nPositiveAlt=numel(indPositive);

2.1.8 Using of negated boolean variable names is acceptable when it simpli�es
the code.

A contradictory situation arises when such a name is used in conjunction with the logical
negation operator as this results in a double negative. It is not immediately apparent what
isnFound means. Use isFound and avoid isnFound in such cases but remember

that there are many situations when use of negated logical variables is justi�ed:

Negated logical variables

1 %initial parameters
2 nRows=15;
3 nCols=10;
4 %generate random matrix
5 randMat=rand(nRows,nCols);
6 %find negative elements
7 isnNeg=randMat>=0;
8 %find sum of negative elements
9 res=sum(randMat(isnNeg));

10 %display results
11 disp(res);

2.1.9 Acronyms, even if normally uppercase, should be mixed or lower case.

Using all uppercase for the base name will give con�icts with the naming conventions
given above. A variable of this type would have to be named dVD, hTML etc. which
obviously is not very readable. When the name is connected to another, the readability
is seriously reduced; the word following the abbreviation does not stand out as it should.
Use html, isUsaSpecific. Avoid hTML, isUSASpecific.

2.1.10 Avoid using a keyword or special value name for a variable name.

MATLAB can produce cryptic error messages or strange results if any of its reserved words
or builtin special values is rede�ned. Reserved words are listed by the command iskey-
word. Special values are listed in the documentation.

2.2 Structures

2.2.1 Structure names should begin with a capital letter.

This usage is consistent with C++ practice, and it helps to distinguish between structures
and ordinary variables.

MSU, System Analysis Department

2.3 Functions/class method names Page 4

2.2.2 The name of the structure is implicit, and need not be included in a
�eld name.

Repetition is super�uous in use, as shown in the example. Use Segment.length. Avoid
Segment.segmentLength.

2.2.3 Names of structure �elds should begin with a lowercase letter even if
the �elds is a structure

The problem arise when the nesting of the structure is high and it can be annoying to
use capital letter for all �eld-structures. Use Data.dConf.calc.windowSize. Avoid
Data.Conf.Calc.windowSize.

2.3 Functions/class method names

The names of functions should document their use.

2.3.1 Names of functions should be written in lower case without under-
scores.

It is clearest to have the function and its m-�le names the same. Using lower case avoids
potential �lename problems in mixed operating system environments. getname(.),
computetotalwidth(.).

2.3.2 Functions should have meaningful names.

There is an unfortunate MATLAB tradition of using short and often somewhat cryptic
function names probably due to the DOS 8 character limit. This concern is no longer
relevant and the tradition should usually be avoided to improve readability. Use com-
putetotalwidth(). Avoid compwid(). An exception is the use of abbreviations or
acronyms widely used in mathematics. max(.), gcd(.). Functions with such short
names should always have the complete words in the �rst header comment line for clarity
and to support lookfor searches.

2.3.3 Functions with a single output can be named for the output.

This is common practice in MathWorks code. mean(.), standarderror(.)

2.3.4 Functions with no output argument or which only return a handle
should be named after what they do.

This practice increases readability, making it clear what the function should (and possibly
should not) do. This makes it easier to keep the code clean of unintended side e�ects.
plot(.)

MSU, System Analysis Department

2.4 Classes Page 5

2.3.5 The pre�xes get/set should generally be reserved for accessing an ob-
ject or property, not for functions

General practice of MathWorks and common practice in C++ and Java development. A
plausible exception is the use of set for logical set operations. getObj(.); setApp-
Data(.)

2.3.6 The pre�x compute can be used in methods where something is com-
puted.

Consistent use of the term enhances readability. Give the reader the immediate clue that
this is a potentially complex or time consuming operation. computeweightedaver-
age(); computespread().

2.3.7 The method names should consist of subwords each starting with a
capital letter

Please note that the convention for object methods is di�erent and every next subword
should start with a capital letter. doSomething(.); calculateAppData(.)

2.3.8 The pre�x �nd can be used in methods where something is looked up.

Give the reader the immediate clue that this is a simple look up method with a minimum
of computations involved. Consistent use of the term enhances readability and it is a
good substitute for get. findOldestRecord(.); findHeaviestElement(.);

2.3.9 The pre�x is should be used for boolean functions.

Common practice in MathWorks code as well as C++ and Java. isoverpriced(.);
iscomplete(.)

2.3.10 Complement names should be used for complement operations.

Reduce complexity by symmetry.

get/set, add/remove,create/destroy, start/stop, insert/delete,
increment/decrement, old/new, begin/end, first/last, up/down,
min/max, next/previous, old/new, open/close, show/hide,
suspend/resume

2.3.11 Avoid unintentional shadowing.

In general function names should be unique. Shadowing (having two or more functions
with the same name) increases the possibility of unexpected behavior or error. Names
can be checked for shadowing using which -all or exist.

2.4 Classes

The names of classes should document their use.

MSU, System Analysis Department

2.5 Scripts Page 6

2.4.1 Classes names should start with a capital letter.

StateConfigurator is just �ne while stateConfigurator should be avoided.

2.4.2 Interfaces should with I.

IStateConfigurator is ok.

2.4.3 Abstract classes should with A.

AStateConfigurator is ok.

2.4.4 Classes names should not contain their full package names unless but
can contain a small part of package name.

AStateConfigurator located within a package modgen.configurators is ok for
two reasons: a) the package can contain the classes that are not con�gurators and b)
When import instruction is used the package name can be omitted when referring to the
class names and in this case Configurator su�x improves readability. AModGenCon-
figurator should be avoided.

2.5 Scripts

The names of scripts should document their use

2.5.1 Names of scripts should be pre�xed with s_ and should be written in
lower case with underscores.

Use s_gen_config. Avoid sgenconfig,sGenConfing.

2.5.2 Prefer classes or functions to the scripts

In large applications a lot of scripts can produce a mess so because of all of the having
the same variable visibility context. Use functions or classes instead

2.6 General

2.6.1 Names of constants should always be in upper-case

MAX_ELEM_NUMBER.

2.6.2 Names of dimensioned variables should usually have a units su�x.

Using a single set of units is an attractive idea that is only rarely implemented completely.
Adding units su�xes helps to avoid the almost inevitable mixes. positionQuotatio-
nUnits or positionQU.

MSU, System Analysis Department

3. Files and Organization Page 7

2.6.3 Abbreviations in names should be avoided.

Using whole words reduces ambiguity and helps to make the code self-documenting. Use
computearrivaltime(.). Avoid comparr(.). Domain speci�c phrases that are
more naturally known through their abbreviations or acronyms should be kept abbrevi-
ated. Even these cases might bene�t from a de�ning comment near their �rst appearance.
std, var, html, cpu.

2.6.4 Consider making names pronounceable.

Names that are at least somewhat pronounceable are easier to read and remember.

2.6.5 All names should be written in English.

The MATLAB distribution is written in English, and English is the preferred language
for international development.

3 Files and Organization

Structuring code, both among and within �les is essential to making it understandable.
Thoughtful partitioning and ordering increase the value of the code.

The main di�erence between script and function is that normally the �rst one is not
supposed to be reusable in other applications while the function is supposed to be logically
solid peace of the code which is maintainable and reusable.

3.1 Functions

3.1.1 Modularize and partition

The best way to write a big program is to assemble it from well designed functions. This
approach enhances readability, understanding and testing by reducing the amount of text
which must be read to see what the code is doing. Code longer than two editor screens is
a candidate for partitioning. Small well designed functions are more likely to be usable in
other applications. All subfunctions and many functions should do one thing very well.
Every function should hide something.

3.1.2 Do not use global variables for function interaction

The use of arguments is almost always clearer than the use of global variables. Moreover
it is not correct when a function knows anything about a workspace surrounding it since
this is a prerogative of the scripts to know exactly where their inputs and outputs are
located.

3.1.3 Use common function interface format

Common function interface is a very important detail for development of large applica-
tions/toolboxes containing many functions. Here is proposed requirements for function
interface

MSU, System Analysis Department

3.1 Functions Page 8

• Pass some part of input arguments as the properties if the number of arguments is
greater than 3 so that the number of regular inputs does not exceed 3.

• Use the �xed list of regular arguments.

1 %Avoid writing the function which allows the following calls
2 [dataOutMat,timeOutVec]=aggregatetimeseries(dataInpMat,timeInpVec);
3 %in that case windowSize is not a property
4 [dataOutMat,timeOutVec]=aggregatetimeseries(dataInpMat,timeInpVec,...
5 windowSize);

• Number of output arguments can be optional

1 %Matrix nAggregatedObsMat is an optional output
2 [dataOutMat,timeOutVec]=aggregatetimeseries(dataInpMat,timeInpVec);
3 [dataOutMat,timeOutVec,nAggregatedObsMat]=...
4 aggregatetimeseries(dataInpMat,timeInpVec,windowSize);

• Make all properties optional and de�ne default values for all of them.

1 %Use window size = 15 lags (default value)
2 [dataOutMat,timeOutVec]=aggregatetimeseries(dataInpMat,timeInpVec);
3 %Use specified windowSize=10 lags
4 [dataOutMat,timeOutVec]=aggregatetimeseries(dataInpMat,timeInpVec,...
5 ’windowSize’,10);
6

• Pass string inputs as the properties, names of the function regimes/methods in
particular.

1 [dataOutMat,timeOutVec]=aggregatetimeseries(...
2 dataInpMat,timeInpVec,’method’,’simple’,’windowSize’,1);

• Do not pass �ags specifying methods and other function regimes as numbers. Use
strings instead.

1 %Use
2 [dataOutMat,timeOutVec]=aggregatetimeseries(dataInpMat,timeInpVec,...
3 ’method’,’advanced’);
4 %Avoid
5 [dataOutMat,timeOutVec]=aggregatetimeseries(dataInpMat,timeInpVec,...
6 ’method’,1);

MSU, System Analysis Department

3.1 Functions Page 9

• Pack output arguments into structure when the number of output arguments is
greater than 3-5.

1 ResStruct=multipleoutputfunction(dataInpMat,timeInpVec,...
2 ’method’,’simple’,’windowSize’,1);
3 >> disp(ResStruct)
4 outMat1: [30x40 double]
5 outMat2: [30x40 double]
6 outMat3: [10x40 double]
7 method: ’simple’

Common function interface example

1 function [tsOut,tOut]=filterts(tsInp,tInp,varargin)
2 % FILTERTS filters time series according to selected methodId
3 %
4 % Usage: [tsOut,tOut]=filterts(tsInp,iInp,proplist)
5 % [tsOut,tOut]=filterts(tsInp,iInp,isSecondSkip,proplist)
6 %
7 % Input:
8 % regular:
9 % tsInp: double[nObs,nSeries] - input observed data,

10 % tInp: double[nObs,1] - observed time,
11 % optional:
12 % isSecondSkip: logical[1,1] - if true, the second
13 % argument is skipped
14 %
15 % properties:
16 % methodId: string, specified the name of methodId,
17 % ’dummy’ - simple methodId (tsOut=tsInp,tOut=tInp)
18 %
19 % Output:
20 % regular:
21 % tsOut: double[n,nSeries] - filtered time series,
22 % tOut: double[n,1] - corresponding time
23 %
24 % Created by <Name> <FamilyName>, <University/Company>

3.1.4 Use existing functions.

Developing a function that is correct, readable and reasonably �exible can be a signi�cant
task. It may be quicker or surer to �nd an existing function that provides some or all of
the required functionality.

3.1.5 Use function syntax instead of script syntax and operator syntax.

That way it is easy to control input parameters and avoid unpleasant errors.
Use clear(’a’,’b’,’c’); Avoid clear a b c;

MSU, System Analysis Department

4. Statements Page 10

3.1.6 Use function calls for hardly noticeable/distinguishable operators.

That approach signi�cantly improves readability. Use transpose(a);ctranspose(b);
Avoid a.’;a’;

3.1.7 Any block of code appearing in more than one function or script should
be considered for packaging as a function.

It is much easier to manage changes if code appears in only one �le. "Change is inevitable
except from vending machines."

3.1.8 Subfunctions

A function used by only one other function should be packaged as its subfunction in the
same �le. This makes the code easier to understand and maintain.

4 Statements

4.1 Variables

4.1.1 Variables should not be reused unless required by memory limitation.

Enhance readability by ensuring all concepts are represented uniquely. Reduce chance of
error from misunderstood de�nition.

4.2 Loops

4.2.1 Loop variables should be initialized immediately before the loop.

This improves loop speed and helps prevent bogus values if the loop does not execute for
all possible indices.

1 resultMat = zeros(nEntries,1);
2 for iEntity = 1:nEntries
3 resultMat(iEntity)=foo(iEntity);
4 end

4.2.2 The end lines in nested loops can have comments

Adding comments at the end lines of long nested loops can help clarify which statements
are in which loops and what tasks have been performed at these points.

4.3 Conditionals

4.3.1 Complex conditional expressions should be avoided.

Introduce temporary logical variables instead. By assigning logical variables to expres-
sions, the program gets automatic documentation. The construction will be easier to read
and to debug.

MSU, System Analysis Department

4.3 Conditionals Page 11

1 if (value>=lowerLimit)&(value<=upperLimit)&~ismember(value,valueArray)
2 ...
3 end

should be replaced by:

1 isValid = (value >=lowerLimit) & (value <= upperLimit);
2 isNew = ~ismember(value,valueArray);
3 if (isValid & isNew)
4 ...
5 end

4.3.2 The usual case should be put in the if-part and the exception in the
else-part of an if else statement.

This practice improves readability by preventing exceptions from obscuring the normal
path of execution.

1 fid = fopen(fileName);
2 if (fid~=-1)
3 ...
4 else
5 ...
6 end

4.3.3 The conditional expression if 0 should be avoided, except for tempo-
rary block commenting

Make sure that the exceptions don't obscure the normal path of execution. Using the
block comment feature of the editor is preferred.

4.3.4 A switch statement should include the otherwise condition

Leaving the otherwise out is a common error, which can lead to unexpected results.

1 switch (condition)
2 case ABC,
3 ...
4 case DEF,
5 ...
6 otherwise
7 ...
8 end

MSU, System Analysis Department

4.4 General Page 12

4.3.5 The switch variable should usually be a string.

Character strings work well in this context and they are usually more meaningful than
enumerated cases.

4.4 General

4.4.1 Avoid cryptic code.

There is a tendency among some programmers, perhaps inspired by Shakespeare's line:
Brevity is the soul of with, to write MATLAB code that is terse and even obscure. Writing
concise code can be a way to explore the features of the language. However, in almost
every circumstance, clarity should be the goal. As Steve Lord of MathWorks has written,
"A month from now, if I look at this code, will I understand what it's doing? Try to avoid
the situation described by the Captain in Cool Hand Luke, What we've got here is failure
to communicate." The importance of this issue is underlined by many authors. Martin
Fowler: "Any fool can write code that a computer can understand. Good programmers
write code that humans can understand." Kreitzberg and Shneiderman: "Programming
can be fun, so can cryptography; however they should not be combined."

4.4.2 Use parentheses.

MATLAB has documented rules for operator precedence, but who wants to remember
the details? If there might be any doubt, use parentheses to clarify expressions. They are
particularly helpful for extended logical expressions.

4.4.3 The use of numbers in expressions should be minimized.

Numbers that are subject to change usually should be named constants instead. If a
number does not have an obvious meaning by itself, readability is enhanced by introducing
a named constant instead. It can be much easier to change the de�nition of a constant
than to �nd and change all of the relevant occurrences of a literal number in a �le.

4.4.4 Floating point comparisons should be made with caution.

Binary representation can cause trouble, as seen in this example.

1 %initialize input parameters with integer values
2 shortSide = 3;
3 longSide = 5;
4 otherSide = 4;
5 %make comparison in first way
6 longSide^2 ==(shortSide^2 + otherSide^2)
7 >> ans = 1
8 %initialize input parameters with real values
9 scaleFactor = 0.01;

10 %make comparison
11 (scaleFactor*longSide)^2 == ((scaleFactor*shortSide)^2 +...

MSU, System Analysis Department

5. Layout, Comments and Documentation Page 13

12 (scaleFactor*otherSide)^2)
13 >> ans = 0

5 Layout, Comments and Documentation

5.1 Layout

The purpose of layout is to help the reader understand the code. Indentation is particu-
larly helpful for revealing structure.

5.1.1 Content should be kept within the �rst 80 columns.

80 columns is a common dimension for editors, terminal emulators, printers and debuggers,
and �les that are shared between several people should keep within these constraints.
Readability improves if unintentional line breaks are avoided when passing a �le between
programmers.

5.1.2 Lines should be split at graceful points.

Split lines occur when a statement exceeds the suggested 80 column limit. In general: "
Break after a comma or space." Break after an operator. " Align the new line with the
beginning of the expression on the previous line.

1 totalSum=a+b+c+...
2 d+e;
3 function(param1,param2,...
4 param3)
5 setText([’Long line split’,...
6 ’into two parts.’]);

5.1.3 Indentation should be consistent with the MATLAB Editor.

The MATLAB editor provides indentation that clari�es code structure and is consistent
with recommended practices for C++ and Java.

5.1.4 In general a line of code should contain only one executable statement.

This practice improves readability and allows JIT acceleration.

5.1.5 Logical groups of statements within a block should be separated by one
blank line started with %.

Enhance readability by introducing comment symbols between logical units of a block.

MSU, System Analysis Department

5.2 Comments Page 14

5.1.6 Use cell divider %% for block separation. Add to this two lines started
with %.

Cell divider %% while helps reading the code also makes additional features available in
MATLAB Editor.

Separation example

1 %% Initial parameters
2 %
3 nCols=10;
4 nRows=10;
5 %
6 simMethod=’norm’;
7 %
8 %% Simulation
9 %

10 simMat=random(simMethod,nRows,nCols);
11 %
12 %% Display results
13 %
14 disp(simMethod);
15 disp(simMat);

5.2 Comments

The purpose of comments is to add information to the code.
Typical uses for comments are to explain usage, provide reference information, to

justify decisions, to describe limitations, to mention needed improvements. Experience
indicates that it is better to write comments at the same time as the code rather than to
intend to add comments later.

5.2.1 Comments cannot justify poorly written code.

Comments cannot make up for code lacking appropriate name choices and an explicit
logical structure. Such code should be rewritten. Steve McConnell: "Improve the code
and then document it to make it even clearer."

5.2.2 Comments should agree with the code, but do more than just restate
the code.

A bad or useless comment just gets in the way of the reader. N. Schryer: "If the code
and the comments disagree, then both are probably wrong." It is usually more important
for the comment to address why or how rather than what.

5.2.3 Comments should be easy to read.

There should be a space between the upper case letter and end with a period.

MSU, System Analysis Department

5.2 Comments Page 15

5.2.4 Comments should usually have the same indentation as the statements
referred to.

This is to avoid having the comments break the layout of the program. End of line
comments tend to be cryptic and should be avoided except for constant de�nitions.

5.2.5 Use common function header format.

Stick with the following format of function header.

Function header format

1 % <FunctionNameInUpperCase> short functionality description
2 %
3 % detailed description
4 %
5 % Usage: usage format (all usage scenarious should be listed)
6 %
7 % input:
8 % regular:
9 % <inpArgName1>: <type> <dimension> - description

10 % ...
11 % <inpArgNameN>: <type> <dimension> - description
12 % properties:
13 % <propName1>:<type> - description
14 % ...
15 % <propNameK>:<type> - description
16 %
17 % output:
18 % regular:
19 % <outArgName1>: <type> <dimension> - description
20 % ...
21 % <outArgNameM>: <type> <dimension> - description
22 %
23 % Example: one or more usage examples
24

25 % Created by <AuthorName(s)>, <CopyRightDescription>

Note that

• Function header comments should support the use of help and lookfor.

help prints the �rst contiguous block of comment lines from the �le. Make it
helpful. lookfor searches the �rst comment line of all m-�les on the path. Try to
include likely search words in this line.

• Function header comments should discuss any special requirements for the input
arguments.

The user will need to know if the input needs to be expressed in particular units

MSU, System Analysis Department

5.3 Documentation Page 16

1 % ejectionFraction must be between 0 and 1, not a percentage.
2 % elapsedTimeSeconds must be one dimensional.

• Function header comments should describe any side e�ects.

Side e�ects are actions of a function other than assignment of the output variables.
A common example is plot generation. Descriptions of these side e�ects should be
included in the header comments so that they appear in the help printout.

• One should avoid clutter in the help printout of the function header.

It is common to include copyright lines and change history in comments near the
beginning of a function �le. There should be a blank line between the header
comments and these comments so that they are not displayed in response to help.

5.2.6 Use common script header format

The outputs and inputs of MATLAB script are usually harder to specify. However it is
very helpful to stick with common script header format.

Script header format

1 % <ScriptNameInUpperCase> short functionality description
2 %
3 % detailed description
4 %
5 % Input:
6 % description of inputs (what variables have to be set before
7 % running the script)
8 %
9 % Output:

10 % description of outputs (what variables takes values after
11 % execution of the script)
12 %
13 % Created by <AuthorName(s)>, <CompanyName>

5.2.7 All comments should be written in English.

In an international environment, English is the preferred language.

5.3 Documentation

5.3.1 Formal documentation

To be useful documentation should include a readable description of what the code is
supposed to do (Requirements), how it works (Design), which functions it depends on
and how it is used by other code (Interfaces), and how it is tested. For extra credit,
the documentation can include a discussion of alternative solutions and suggestions for
extensions or maintenance. Dick Brandon: "Documentation is like sex; when it's good,
it's very, very good, and when it's bad, it's better than nothing."

MSU, System Analysis Department

REFERENCES Page 17

5.3.2 Consider writing the documentation �rst

Some programmers believe that the best approach is "Code �rst and answer questions
later." Through experience most of us learn that developing a design and then implement-
ing it leads to a much more satisfactory result. Development projects are almost never
completed on schedule. If documentation and testing are left for last, they will get cut
short. Writing the documentation �rst assures that it gets done and will probably reduce
development time.

5.3.3 Changes.

The professional way to manage and document code changes is to use a source control
tool. For very simple projects, adding change history comments to the function �les is
certainly better than nothing.

References

[1] Richard Johnson, MATLAB Programming Style Guidelines.

MSU, System Analysis Department

	Introduction
	 Naming Conventions
	Variables
	Variable names should be in mixed case starting with lower case.
	Variables with a large scope should have more meaningful names. Variables with a small scope can have short but still meaningful names.
	The prefix n should be used for variables representing the number of objects.
	A convention on pluralization should be followed consistently.
	A convention on dimensionality should be followed consistently.
	Iterator variables should be prefixed with mcodecolori, j, k etc.
	Logical matrices should be prefixed with mcodecoloris(mcodecolorisn),index matrices should be prefixed with mcodecolorind
	Using of negated boolean variable names is acceptable when it simplifies the code.
	Acronyms, even if normally uppercase, should be mixed or lower case.
	Avoid using a keyword or special value name for a variable name.

	Structures
	Structure names should begin with a capital letter.
	 The name of the structure is implicit, and need not be included in a field name.
	Names of structure fields should begin with a lowercase letter even if the fields is a structure

	Functions/class method names
	Names of functions should be written in lower case without underscores.
	Functions should have meaningful names.
	Functions with a single output can be named for the output.
	Functions with no output argument or which only return a handle should be named after what they do.
	The prefixes get/set should generally be reserved for accessing an object or property, not for functions
	The prefix compute can be used in methods where something is computed.
	The method names should consist of subwords each starting with a capital letter
	The prefix find can be used in methods where something is looked up.
	 The prefix is should be used for boolean functions.
	Complement names should be used for complement operations.
	 Avoid unintentional shadowing.

	Classes
	Classes names should start with a capital letter.
	Interfaces should with I.
	Abstract classes should with A.
	Classes names should not contain their full package names unless but can contain a small part of package name.

	Scripts
	Names of scripts should be prefixed with mcodecolors_ and should be written in lower case with underscores.
	Prefer classes or functions to the scripts

	General
	Names of constants should always be in upper-case
	Names of dimensioned variables should usually have a units suffix.
	Abbreviations in names should be avoided.
	Consider making names pronounceable.
	All names should be written in English.

	Files and Organization
	Functions
	Modularize and partition
	Do not use global variables for function interaction
	Use common function interface format
	Use existing functions.
	Use function syntax instead of script syntax and operator syntax.
	Use function calls for hardly noticeable/distinguishable operators.
	Any block of code appearing in more than one function or script should be considered for packaging as a function.
	Subfunctions

	Statements
	Variables
	Variables should not be reused unless required by memory limitation.

	Loops
	Loop variables should be initialized immediately before the loop.
	The end lines in nested loops can have comments

	Conditionals
	Complex conditional expressions should be avoided.
	The usual case should be put in the mcodecolorif-part and the exception in the mcodecolorelse-part of an mcodecolorif else statement.
	The conditional expression mcodecolorif 0 should be avoided, except for temporary block commenting
	A switch statement should include the otherwise condition
	The mcodecolorswitch variable should usually be a string.

	General
	Avoid cryptic code.
	Use parentheses.
	The use of numbers in expressions should be minimized.
	Floating point comparisons should be made with caution.

	Layout, Comments and Documentation
	Layout
	Content should be kept within the first 80 columns.
	Lines should be split at graceful points.
	Indentation should be consistent with the MATLAB Editor.
	In general a line of code should contain only one executable statement.
	Logical groups of statements within a block should be separated by one blank line started with mcodecolor%.
	Use cell divider mcodecolor%% for block separation. Add to this two lines started with mcodecolor%.

	Comments
	Comments cannot justify poorly written code.
	Comments should agree with the code, but do more than just restate the code.
	Comments should be easy to read.
	Comments should usually have the same indentation as the statements referred to.
	Use common function header format.
	Use common script header format
	All comments should be written in English.

	Documentation
	Formal documentation
	Consider writing the documentation first
	Changes.

