-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathprepare_models.py
60 lines (49 loc) · 2.76 KB
/
prepare_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import torch
from torch.autograd import Variable as V
import torchvision.models as models
from torch.nn import functional as F
def prep_models(context_model='resnet18', body_model='resnet18', model_dir='./'):
''' Download imagenet pretrained models for context_model and body_model.
:param context_model: Model to use for conetxt features.
:param body_model: Model to use for body features.
:param model_dir: Directory path where to store pretrained models.
:return: Yolo model after loading model weights
'''
model_name = '%s_places365.pth.tar' % context_model
model_file = os.path.join(model_dir, model_name)
if not os.path.exists(model_file):
download_command = 'wget ' + 'http://places2.csail.mit.edu/models_places365/' + model_name +' -O ' + model_file
os.system(download_command)
save_file = os.path.join(model_dir,'%s_places365_py36.pth.tar' % context_model)
from functools import partial
import pickle
pickle.load = partial(pickle.load, encoding="latin1")
pickle.Unpickler = partial(pickle.Unpickler, encoding="latin1")
model = torch.load(model_file, map_location=lambda storage, loc: storage, pickle_module=pickle)
torch.save(model, save_file)
# create the network architecture
model_context = models.__dict__[context_model](num_classes=365)
checkpoint = torch.load(save_file, map_location=lambda storage, loc: storage) # model trained in GPU could be deployed in CPU machine like this!
if context_model == 'densenet161':
state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()}
state_dict = {str.replace(k,'norm.','norm'): v for k,v in state_dict.items()}
state_dict = {str.replace(k,'conv.','conv'): v for k,v in state_dict.items()}
state_dict = {str.replace(k,'normweight','norm.weight'): v for k,v in state_dict.items()}
state_dict = {str.replace(k,'normrunning','norm.running'): v for k,v in state_dict.items()}
state_dict = {str.replace(k,'normbias','norm.bias'): v for k,v in state_dict.items()}
state_dict = {str.replace(k,'convweight','conv.weight'): v for k,v in state_dict.items()}
else:
state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()} # the data parallel layer will add 'module' before each layer name
model_context.load_state_dict(state_dict)
model_context.eval()
model_context.cpu()
torch.save(model_context, os.path.join(model_dir, 'context_model' + '.pth'))
print ('completed preparing context model')
model_body = models.__dict__[body_model](pretrained=True)
model_body.cpu()
torch.save(model_body, os.path.join(model_dir, 'body_model' + '.pth'))
print ('completed preparing body model')
return model_context, model_body
if __name__ == '__main__':
prep_models(model_dir='proj/debug_exp/models')