-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathUniversal Generator Ring.py
341 lines (271 loc) · 11 KB
/
Universal Generator Ring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#
# This script generates a 3D galaxy from a number of parameters and stores
# it in an array. You can modify this script to store the data in a database
# or whatever your purpose is. THIS script uses the data only to generate a
# PNG with a 2D view from top of the galaxy.
#
# The algorithm used to generate the galaxy is borrowed from Ben Motz
# <[email protected]>. The original C source code for DOS (including a 3D
# viewer) can be downloaded here:
#
# http://bits.bristol.ac.uk/motz/tep/galaxy.html
#
# Unfortunately, the original python code has been lost to time and a lack of wanting-to- search-through-several-hundred-webpages-for-one-webarchive-page. Sorry, original python guy.
#
# A fair portion of the revisions and code is from /u/_Foxtrot_ on reddit. They are much better with the python-fu than I!
#
from PIL import Image
from PIL import ImageDraw
import random
import math
import sys
# Generation parameters:
# raw_input the user's desired values
# Background color of the created PNG
PNGBGCOLOR = (0, 0, 0)
# Quick Filename
RAND = random.randrange(0, 108000000000)
# ---------------------------------------------------------------------------
NAME = raw_input('Galaxy Name:')
NUMC = int(raw_input('Number of Globular Clusters other than Central <Default:0>:') or "1")
NUMHUB = int(raw_input('Number of Core Stars <Default:2000>:') or "2000")
NUMINT = int(raw_input('Number of Intermediate Stars <Default:800>:') or "800")
NUMDISK = int(raw_input('Number of Disk Stars <Default:4000>:') or "4000")
NUMCLUSA = NUMHUB / 70
NUMCLUS = int(raw_input('Number of Stars in each Cluster <Default:Hub / 70>:') or str(NUMCLUSA))
DISCLUSA = NUMCLUS / 4
DISCLUS = int(raw_input('Distribution of Star Number in each Cluster <Default: Avg/ 4>:') or str(DISCLUSA))
HUBRAD = float(raw_input('Radius of Core <Default:90.0>:') or "90.0")
INTRADA = HUBRAD * 0.3
INTRAD = float(raw_input('Intermediate Area Radius <Default: Hub Radius * 0.3>:') or str(INTRADA))
DISKRAD = float(raw_input('Radius of Disk <Default:45.0>:') or "45.0")
CLUSRADA = NUMCLUS / 5
CLUSRAD = float(raw_input('Radius of each cluster <Default:Hub / 12>:') or str(CLUSRADA))
DISCLRADA = CLUSRAD / 5
DISCLRAD = float(raw_input('Distribution of Cluster Radius <Default:Avg / 5>:') or str(DISCLRADA))
MAXHUBZ = float(raw_input('Maximum Depth of Core <Default:16.0>:') or "16.0")
MAXINTZA = MAXHUBZ / 2
MAXINTZ = float(raw_input('Maximum Depth of Intermediate Area <Default: Core Depth / 2>:') or str(MAXINTZA))
MAXDISKZ = float(raw_input('Maximum Depth of Arms <Default:2.0>:') or "2.0")
PNGSIZE = float(raw_input('X and Y Size of PNG <Default:1200>:') or "1200")
PNGFRAME = float(raw_input('PNG Frame Size <Default:50>:') or "50")
stars = []
clusters = []
disstar_color_dict = {
0: (229, 30, 30),
1: (203, 30, 26),
2: (181, 18, 6),
3: (200, 39, 13),
4: (200, 63, 21),
5: (222, 137, 10),
6: (212, 178, 42),
7: (210, 188, 38),
8: (217, 207, 66),
9: (222, 226, 125),
10: (222, 226, 160),
11: (255, 255, 253),
12: (255, 255, 255),
13: (253, 255, 255),
14: (250, 255, 255),
15: (222, 243, 255),
16: (222, 243, 255),
17: (230, 243, 255),
18: (140, 176, 255),
19: (140, 176, 225)
}
censtar_color_dict = {
0: (229, 30, 30),
1: (203, 30, 26),
2: (181, 18, 6),
3: (200, 39, 13),
4: (200, 63, 21),
5: (222, 75, 10),
6: (222, 102, 10),
7: (222, 137, 10),
8: (212, 178, 42),
9: (210, 188, 38),
10: (217, 207, 66),
11: (217, 207, 66),
12: (222, 226, 125),
13: (222, 226, 125),
14: (255, 255, 253),
15: (255, 255, 255),
16: (253, 255, 255),
17: (222, 243, 255),
18: (222, 243, 255),
19: (140, 176, 225)
}
SHRAD = HUBRAD * 0.1
DRAD = HUBRAD + INTRAD
SDRAD = DISKRAD * 0.1
SIRAD = INTRAD * 0.1
SCRAD = CLUSRAD * 0.06
NUMCLUSA = NUMCLUS - DISCLUS
NUMCLUSB = NUMCLUS + DISCLUS
CLUSRADA = CLUSRAD - DISCLRAD
CLUSRADB = CLUSRAD + DISCLRAD
NUMCB = NUMC + 1
def generateClusters():
c = 0
cx = 0
cy = 0
cz = 0
rad = random.uniform(CLUSRADA, CLUSRADB)
num = random.uniform(NUMCLUSA, NUMCLUSB)
clusters.append((cx, cy, cz, rad, num))
c = 1
while c < NUMCB:
# random distance from centre
dist = random.uniform(CLUSRAD, (HUBRAD+DISKRAD))
# any rotation- clusters can be anywhere
theta = random.random() * 360
cx = math.cos(theta * math.pi / 180.0) * dist
cy = math.sin(theta * math.pi / 180.0) * dist
cz = random.random() * MAXHUBZ * 2.0 - MAXHUBZ
rad = random.uniform(CLUSRADA, CLUSRADB)
num = random.uniform(NUMCLUSA, NUMCLUSB)
# add cluster to clusters array
clusters.append((cx, cy, cz, rad, num))
# process next
c = c+1
sran = 0
cran = 0
def generateStars():
# omega is the separation (in degrees) between each arm
# Prevent div by zero error:
omega = 30.0
i = 0
while i < NUMDISK:
# Choose a random distance from center
dist = DRAD + random.random() * DISKRAD
distb = dist + random.uniform(0,SDRAD)
# This is the 'clever' bit, that puts a star at a given distance
# into an arm: First, it wraps the star round by the number of
# rotations specified. By multiplying the distance by the number of
# rotations the rotation is proportional to the distance from the
# center, to give curvature
theta = ((360.0 * (distb / DISKRAD))
# Then move the point further around by a random factor up to
# ARMWIDTH
+ random.random() * 65
# Then multiply the angle by a factor of omega, putting the
# point into one of the arms
# + (omega * random.random() * NUMARMS )
+ omega * random.randrange(0, 12)
# Then add a further random factor, 'fuzzin' the edge of the arms
+ random.random() * 15 * 2.0 - 15
# + random.randrange( -FUZZ, FUZZ )
)
# Convert to cartesian
#def cartesian_convert
x = math.cos(theta * math.pi / 180.0) * distb
y = math.sin(theta * math.pi / 180.0) * distb
z = random.random() * MAXDISKZ * 2.0 - MAXDISKZ
# Replaces the if/elif logic with a simple lookup. Faster and
# and easier to read.
scol = disstar_color_dict[random.randrange(0,19)]
# Add star to the stars array
stars.append((x, y, z, scol))
# Process next star
i = i + 1
sran = 0
# Now generate the Hub. This places a point on or under the curve
# maxHubZ - s d^2 where s is a scale factor calculated so that z = 0 is
# at maxHubR (s = maxHubZ / maxHubR^2) AND so that minimum hub Z is at
# maximum disk Z. (Avoids edge of hub being below edge of disk)
scale = MAXHUBZ / (HUBRAD * HUBRAD)
i = 0
while i < NUMHUB:
# Choose a random distance from center
dist = random.random() * HUBRAD
distb = dist + random.uniform(0,SHRAD)
# Any rotation (points are not on arms)
theta = random.random() * 360
# Convert to cartesian
x = math.cos(theta * math.pi / 180.0) * distb
y = math.sin(theta * math.pi / 180.0) * distb
z = (random.random() * 2 - 1) * (MAXHUBZ - scale * distb * distb)
# Replaces the if/elif logic with a simple lookup. Faster and
# and easier to read.
scol = censtar_color_dict[random.randrange(0,19)]
# Add star to the stars array
stars.append((x, y, z, scol))
# Process next star
i = i + 1
sran = 0
scale = MAXINTZ / (DRAD * DRAD)
i = 0
while i < NUMINT:
dist = HUBRAD + random.random() * INTRAD
distb = dist + random.uniform(0,SIRAD)
theta = random.random() * 360
x = math.cos(theta * math.pi / 180.0) * distb
y = math.sin(theta * math.pi / 180.0) * distb
z = (random.random() * 2 - 1) * (MAXINTZ - scale * distb * distb)
scol = censtar_color_dict[random.randrange(0,19)]
stars.append((x, y, z, scol))
i = i + 1
sran = 0
# Generate clusters and their stars.
c = 0
while c < NUMCB:
for (cx, cy, cz, rad, num) in clusters:
scale = rad / (rad * rad)
i = 0
while i < num:
dist = random.uniform(-rad,rad)
distb = dist + random.uniform(0,SCRAD)
theta = random.random() * 360
# Cartesian!
x = cx + (math.cos(theta * math.pi / 180) * distb)
y = cy + (math.sin(theta * math.pi / 180) * distb)
z = (random.random() * 2 - 1) * ((cz + rad) - scale * distb * distb)
scol = censtar_color_dict[random.randrange(0,19)]
stars.append((x, y, z, scol))
i = i + 1
sran = 0
c = c+1
def drawToPNG(filename):
image = Image.new("RGB", (int(PNGSIZE), int(PNGSIZE)), PNGBGCOLOR)
draw = ImageDraw.Draw(image)
# Find maximal star distance
max = 0
for (x, y, z, scol) in stars:
if abs(x) > max: max = x
if abs(y) > max: max = y
if abs(z) > max: max = z
# Calculate zoom factor to fit the galaxy to the PNG size
factor = float(PNGSIZE - PNGFRAME * 2) / (max * 2)
for (x, y, z, scol) in stars:
sx = factor * x + PNGSIZE / 2
sy = factor * y + PNGSIZE / 2
draw.point((sx, sy), fill=scol)
# Save the PNG
image.save(filename)
print filename
# Generate the galaxy
generateClusters()
generateStars()
# Save the galaxy as PNG to galaxy.png
drawToPNG("ringgalaxy" + str(RAND) + "-" + str(NAME) + ".png")
# Create the galaxy's data galaxy.txt
with open("ringgalaxy" + str(RAND) + "-" + str(NAME) + ".txt", "w") as text_file:
text_file.write("Galaxy Number: {}".format(RAND))
text_file.write("Galaxy Name: {}".format(NAME))
text_file.write("Number of Clusters: {}".format(NUMC))
text_file.write("Hub Stars: {}".format(NUMHUB))
text_file.write("Number of Stars per Cluster {}".format(NUMCLUS))
text_file.write("Star Number Distribution per Cluster {}".format(DISCLUS))
text_file.write("Intermediate Stars: {}".format(NUMINT))
text_file.write("Disk Stars: {}".format(NUMDISK))
text_file.write("Hub Radius: {}".format(HUBRAD))
text_file.write("Cluster Radius: {}".format(CLUSRAD))
text_file.write("Cluster Radius Distribution: {}".format(DISCLRAD))
text_file.write("Intermediate Area Radius: {}".format(INTRAD))
text_file.write("Disk Radius: {}".format(DISKRAD))
text_file.write("Hub Maximum Depth: {}".format(MAXHUBZ))
text_file.write("Disk Maximum Depth: {}".format(MAXDISKZ))
text_file.write("Intermediate Area Depth: {}".format(MAXINTZ))
text_file.write("Disk Maximum Depth: {}".format(MAXDISKZ))
text_file.write("Image Size: {}".format(PNGSIZE))
text_file.write("Frame Size: {}".format(PNGFRAME))