|
| 1 | +""" |
| 2 | +This code demonstrates the use of SOTA face embeddings model ARCFACE |
| 3 | +through wrapper called insightface |
| 4 | +
|
| 5 | +It uses Retinaface Face detector to detect faces. |
| 6 | +
|
| 7 | +References : https://www.insightface.ai/ |
| 8 | +""" |
| 9 | + |
| 10 | +import cv2 |
| 11 | +import numpy as np |
| 12 | +from insightface.app import FaceAnalysis |
| 13 | + |
| 14 | + |
| 15 | +def prepare_model(model_name: str = "buffalo_l", ctx_id: int = -1) -> FaceAnalysis: |
| 16 | + """ |
| 17 | + Initialize and Prepare face analysis model |
| 18 | +
|
| 19 | + Args: |
| 20 | + - model_name = default 'buffalo_l' |
| 21 | + - ctx_id = gpu number 1,2... , for CPU -1 |
| 22 | +
|
| 23 | + Return: |
| 24 | + Configured FaceAnalysis instance ready for inference |
| 25 | +
|
| 26 | + """ |
| 27 | + app = FaceAnalysis(model_name) |
| 28 | + app.prepare(ctx_id=ctx_id) |
| 29 | + |
| 30 | + return app |
| 31 | + |
| 32 | + |
| 33 | +def get_facial_data(face_analysis_model: FaceAnalysis, frame: np.ndarray) -> list[dict]: |
| 34 | + """ |
| 35 | + Extract facial data from a frame using the face analysis model |
| 36 | +
|
| 37 | + Args: |
| 38 | + - face analysis model : prepared FaceanAlysis instance |
| 39 | + - frame : BGR image as numpy array (opencv format) |
| 40 | + Returns: |
| 41 | + - List of dict, each containing facial data for one detected face: |
| 42 | + - bounding_box: Face bounding box coordinates |
| 43 | + - keypoints: 5-point facial landmark |
| 44 | + - landmark_3d_68: 68-point 3d landmarks |
| 45 | + - landmakr_2d_106: 106-points 2d landmarks |
| 46 | + - pose: Head pose (pitch yaw roll) |
| 47 | + - gender: Predicted gender (0-female,1:male) |
| 48 | + - age: Predicted age |
| 49 | + - embeddings: 512-dimensional face vector |
| 50 | +
|
| 51 | + Example: |
| 52 | + >>> # model = prepare_model(ctx_id = -1) |
| 53 | + >>> # frame = cv2.imread("test_face.jpg") |
| 54 | + >>> # faces = get_facial_data(model,frame) |
| 55 | + >>> # len(faces)>=0 |
| 56 | +
|
| 57 | + """ |
| 58 | + |
| 59 | + results = face_analysis_model.get(frame) |
| 60 | + faces = [] |
| 61 | + for result in results: |
| 62 | + face_data = { |
| 63 | + "bounding_box": result["bbox"], |
| 64 | + "keypoints": result["kps"], |
| 65 | + "landmark_3d_68": result["landmark_3d_68"], |
| 66 | + "pose": result["pose"], |
| 67 | + "landmark_2d_106": result["landmark_2d_106"], |
| 68 | + "gender": result["gender"], |
| 69 | + "age": result["age"], |
| 70 | + "embedding": result["embedding"], |
| 71 | + } |
| 72 | + faces.append(face_data) |
| 73 | + |
| 74 | + return faces |
| 75 | + |
| 76 | + |
| 77 | +def run_webcam_demo(ctx_id: int = -1, source: str | int = 0) -> None: |
| 78 | + """ |
| 79 | + Run live face analysis on wecam feed |
| 80 | +
|
| 81 | + Args: |
| 82 | + - ctx_id: GPU context id -1 for cpu and >1 for gpu |
| 83 | + - source: camera int for webcam or path for video file |
| 84 | + """ |
| 85 | + face_model = prepare_model(ctx_id=ctx_id) # doctest: +SKIP |
| 86 | + capture = cv2.VideoCapture(source) |
| 87 | + |
| 88 | + while True: |
| 89 | + ret, frame = capture.read() |
| 90 | + if not ret: |
| 91 | + break |
| 92 | + |
| 93 | + faces = get_facial_data(face_model, frame) |
| 94 | + |
| 95 | + for face in faces: |
| 96 | + bbox = [int(coord) for coord in face["bounding_box"]] |
| 97 | + cv2.rectangle( |
| 98 | + frame, |
| 99 | + (bbox[0], bbox[1]), |
| 100 | + (bbox[2], bbox[3]), |
| 101 | + color=(0, 255, 0), |
| 102 | + thickness=2, |
| 103 | + ) |
| 104 | + |
| 105 | + cv2.imshow("Face Analysis", frame) |
| 106 | + if cv2.waitKey(1) & 0xFF == ord("q"): |
| 107 | + break |
| 108 | + |
| 109 | + capture.release() |
| 110 | + cv2.destroyAllWindows() |
| 111 | + |
| 112 | + |
| 113 | +if __name__ == "__main__": |
| 114 | + run_webcam_demo(ctx_id=1) |
0 commit comments