forked from st-tech/zr-obp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear.py
307 lines (236 loc) · 9.05 KB
/
linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright (c) Yuta Saito, Yusuke Narita, and ZOZO Technologies, Inc. All rights reserved.
# Licensed under the Apache 2.0 License.
"""Contextual Linear Bandit Algorithms."""
from dataclasses import dataclass
import numpy as np
from sklearn.utils import check_scalar
from ..utils import check_array
from .base import BaseContextualPolicy
@dataclass
class BaseLinPolicy(BaseContextualPolicy):
"""Base class for contextual bandit policies using linear regression.
Parameters
------------
dim: int
Number of dimensions of context vectors.
n_actions: int
Number of actions.
len_list: int, default=1
Length of a list of actions in a recommendation/ranking inferface, slate size.
When Open Bandit Dataset is used, 3 should be set.
batch_size: int, default=1
Number of samples used in a batch parameter update.
random_state: int, default=None
Controls the random seed in sampling actions.
epsilon: float, default=0.
Exploration hyperparameter that must take value in the range of [0., 1.].
"""
def __post_init__(self) -> None:
"""Initialize class."""
super().__post_init__()
self.theta_hat = np.zeros((self.dim, self.n_actions))
self.A_inv = np.concatenate(
[np.identity(self.dim) for _ in np.arange(self.n_actions)]
).reshape(self.n_actions, self.dim, self.dim)
self.b = np.zeros((self.dim, self.n_actions))
self.A_inv_temp = np.concatenate(
[np.identity(self.dim) for _ in np.arange(self.n_actions)]
).reshape(self.n_actions, self.dim, self.dim)
self.b_temp = np.zeros((self.dim, self.n_actions))
def update_params(self, action: int, reward: float, context: np.ndarray) -> None:
"""Update policy parameters.
Parameters
------------
action: int
Selected action by the policy.
reward: float
Observed reward for the chosen action and position.
context: array-like, shape (1, dim_context)
Observed context vector.
"""
self.n_trial += 1
self.action_counts[action] += 1
# update the inverse matrix by the Woodbury formula
self.A_inv_temp[action] -= (
self.A_inv_temp[action]
@ context.T
@ context
@ self.A_inv_temp[action]
/ (1 + context @ self.A_inv_temp[action] @ context.T)[0][0]
)
self.b_temp[:, action] += reward * context.flatten()
if self.n_trial % self.batch_size == 0:
self.A_inv, self.b = (
np.copy(self.A_inv_temp),
np.copy(self.b_temp),
)
@dataclass
class LinEpsilonGreedy(BaseLinPolicy):
"""Linear Epsilon Greedy.
Parameters
------------
dim: int
Number of dimensions of context vectors.
n_actions: int
Number of actions.
len_list: int, default=1
Length of a list of actions in a recommendation/ranking inferface, slate size.
When Open Bandit Dataset is used, 3 should be set.
batch_size: int, default=1
Number of samples used in a batch parameter update.
n_trial: int, default=0
Current number of trials in a bandit simulation.
random_state: int, default=None
Controls the random seed in sampling actions.
epsilon: float, default=0.
Exploration hyperparameter that must take value in the range of [0., 1.].
References
------------
L. Li, W. Chu, J. Langford, and E. Schapire.
A contextual-bandit approach to personalized news article recommendation.
In Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM, 2010.
"""
epsilon: float = 0.0
def __post_init__(self) -> None:
"""Initialize class."""
check_scalar(self.epsilon, "epsilon", float, min_val=0.0, max_val=1.0)
self.policy_name = f"linear_epsilon_greedy_{self.epsilon}"
super().__post_init__()
def select_action(self, context: np.ndarray) -> np.ndarray:
"""Select action for new data.
Parameters
------------
context: array-like, shape (1, dim_context)
Observed context vector.
Returns
----------
selected_actions: array-like, shape (len_list, )
List of selected actions.
"""
check_array(array=context, name="context", expected_dim=2)
if context.shape[0] != 1:
raise ValueError("Expected `context.shape[0] == 1`, but found it False")
if self.random_.rand() > self.epsilon:
self.theta_hat = np.concatenate(
[
self.A_inv[i] @ self.b[:, i][:, np.newaxis]
for i in np.arange(self.n_actions)
],
axis=1,
) # dim * n_actions
predicted_rewards = (context @ self.theta_hat).flatten()
return predicted_rewards.argsort()[::-1][: self.len_list]
else:
return self.random_.choice(
self.n_actions, size=self.len_list, replace=False
)
@dataclass
class LinUCB(BaseLinPolicy):
"""Linear Upper Confidence Bound.
Parameters
----------
dim: int
Number of dimensions of context vectors.
n_actions: int
Number of actions.
len_list: int, default=1
Length of a list of actions in a recommendation/ranking inferface, slate size.
When Open Bandit Dataset is used, 3 should be set.
batch_size: int, default=1
Number of samples used in a batch parameter update.
random_state: int, default=None
Controls the random seed in sampling actions.
epsilon: float, default=0.
Exploration hyperparameter that must be greater than or equal to 0.0.
References
--------------
L. Li, W. Chu, J. Langford, and E. Schapire.
A contextual-bandit approach to personalized news article recommendation.
In Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM, 2010.
"""
epsilon: float = 0.0
def __post_init__(self) -> None:
"""Initialize class."""
check_scalar(self.epsilon, "epsilon", float, min_val=0.0)
self.policy_name = f"linear_ucb_{self.epsilon}"
super().__post_init__()
def select_action(self, context: np.ndarray) -> np.ndarray:
"""Select action for new data.
Parameters
----------
context: array
Observed context vector.
Returns
----------
selected_actions: array-like, shape (len_list, )
List of selected actions.
"""
check_array(array=context, name="context", expected_dim=2)
if context.shape[0] != 1:
raise ValueError("Expected `context.shape[0] == 1`, but found it False")
self.theta_hat = np.concatenate(
[
self.A_inv[i] @ self.b[:, i][:, np.newaxis]
for i in np.arange(self.n_actions)
],
axis=1,
) # dim * n_actions
sigma_hat = np.concatenate(
[
np.sqrt(context @ self.A_inv[i] @ context.T)
for i in np.arange(self.n_actions)
],
axis=1,
) # 1 * n_actions
ucb_scores = (context @ self.theta_hat + self.epsilon * sigma_hat).flatten()
return ucb_scores.argsort()[::-1][: self.len_list]
@dataclass
class LinTS(BaseLinPolicy):
"""Linear Thompson Sampling.
Parameters
----------
dim: int
Number of dimensions of context vectors.
n_actions: int
Number of actions.
len_list: int, default=1
Length of a list of actions in a recommendation/ranking inferface, slate size.
When Open Bandit Dataset is used, 3 should be set.
batch_size: int, default=1
Number of samples used in a batch parameter update.
random_state: int, default=None
Controls the random seed in sampling actions.
"""
def __post_init__(self) -> None:
"""Initialize class."""
self.policy_name = "linear_ts"
super().__post_init__()
def select_action(self, context: np.ndarray) -> np.ndarray:
"""Select action for new data.
Parameters
----------
context: array-like, shape (1, dim_context)
Observed context vector.
Returns
----------
selected_actions: array-like, shape (len_list, )
List of selected actions.
"""
self.theta_hat = np.concatenate(
[
self.A_inv[i] @ self.b[:, i][:, np.newaxis]
for i in np.arange(self.n_actions)
],
axis=1,
)
theta_sampled = np.concatenate(
[
self.random_.multivariate_normal(self.theta_hat[:, i], self.A_inv[i])[
:, np.newaxis
]
for i in np.arange(self.n_actions)
],
axis=1,
)
predicted_rewards = (context @ theta_sampled).flatten()
return predicted_rewards.argsort()[::-1][: self.len_list]