Skip to content

Latest commit

 

History

History
162 lines (118 loc) · 5.15 KB

README.md

File metadata and controls

162 lines (118 loc) · 5.15 KB

SciPhi [ΨΦ]: A framework for breaking LLM scaling laws

Overview

SciPhi is a Python package that provides two high-level features:

  • Configurable generation of LLM-mediated synthetic training / tuning data for LLMs.
  • Seamless LLM-mediated evaluation of model output.

Screenshot 2023-09-18 at 9 53 55 AM

Questions?

Join us on Discord here or contact me directly. For a SciPhi tutorial, go here.

Installation

# Repository setup
git clone https://github.com/emrgnt-cmplxty/sciphi.git
cd sciphi
# Install dependencies
# pip3 install poetry (if you don't have it)
poetry install -E all
# Setup your environment
cp .env.example .env && vim .env

Requirements

  • Python >= 3.11 and < 3.12
  • Poetry for package management

Optional Feature Requirements

For additional features, you can install the optional dependencies:

poetry install -E <extra_name>
  • anthropic_support: For running with Anthropic models.
  • hf_support: For running with the HuggingFace package, useful for a large variety of model access.
  • openai_support: For running with OpenAI models.
  • vllm_support: For with VLLM, useful for fast inference.
  • llama_index_support: For LlamaIndex, useful for grounded synthesis.
  • chroma_support: For Chroma support, used for large vector databases.
  • all: For all dependencies (ex-vllm, which requires a separate install).

Usage

Dataset Generation

You can use SciPhi for dataset generation by executing the relevant runner.py file with various command-line arguments.

poetry run python sciphi/examples/data_generation/runner.py --provider_name=openai --model_name=gpt-4 --log_level=DEBUG --batch_size=1 --num_samples=1 --output_file_name=example_output.jsonl --example_config=textbooks_are_all_you_need

Key Command-Line Arguments

  • --provider: Which provider to use for completions (default: "openai").
  • --model_name: The name of the model to load from the provider (default: "gpt-3.5-turbo").
  • --temperature: Temperature parameter for the provided model (default: 0.7).
  • --example_config: Which example configuration to use (default: "textbooks_are_all_you_need").
  • --override_config_path: Used to override the example configurations with custom config.
  • --num_samples: Number of samples to generate (default: 1_024).
  • --output_dir: File path to override the default output output file path with.
  • --output_file_name: Filename to override the default output file name with.

Stock data configs

  • evol_instruct - A config for replicating the EvolInstruct dataset
  • textbooks_are_all_you_need - A config for replicating the Python textbook data from Textbooks Are All You Need [2]

Example generated data

Screenshot 2023-09-17 at 11 11 18 PM

Development

The code snippet below shows how to use SciPhi to generate synthetic data for a given LLM provider.

# Build an LLM and provider interface
llm_config = LLMConfigManager.get_config_for_provider(
    provider_name
).create(**build_llm_config(args))
llm_provider = InterfaceManager.get_provider(
    provider_name,
    model_name,
    llm_config,
)

# Initialize the data maker
data_maker = DataMaker(
    DataGeneratorMode(data_config.generator_mode),
    prompt_generator,
    prompt,
    # Optional field,
    # currently only used when generator_mode == "from_hf_dataset"
    dataset_name=data_config.dataset_name,
)

# Generate & write out the results
output_path = get_output_path(args)
logger.debug(f"Writing results to: {output_path}.")
writer = JsonlDataWriter(output_path)

for batch in data_maker.generator(args.batch_size, args.num_samples):
    completions = llm_provider.get_batch_completion(batch)
    for formatted_prompt, completion in zip(batch, completions):
        logger.debug("-" * 100)
        logger.debug(f"Formatted Prompt:\n{formatted_prompt}")
        logger.debug(f"\nCompletion:\n{completion}")
        logger.debug("-" * 100)

        # Write the results using DataWriter
        writer.write(
            [
                {
                    "formatted_prompt": formatted_prompt,
                    "completion": completion,
                }
            ]
        )

License

This project is licensed under the Apache-2.0 License.

Datasets Generated

[1] Python Synthetic Textbooks

Sources

[1] WizardCoder: Empowering Code Large Language Models with Evol-Instruct

[2] Textbooks Are All You Need

📖 Citation

Reference to cite if you use LlamaIndex in a paper:

@software{Emergent_AGI_SciPhi,
author = {Colegrove, Owen},
doi = {Pending},
month = {09},
title = {{LlamaIndex}},
url = {https://github.com/emrgnt-cmplxty/sciphi},
year = {2023}
}