We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
大佬你好,我最近在参考你的 cutlass 写一个 int8 quantized 的 conv。在你的代码中,int8 conv 和 dequantize 是两个 kernel。我想将 DQ fuse 到 conv 中作为一个 kernel 执行以节省访存。我希望借助 DefaultConv2dFprop 中的 EpilogueOp 来实现,也就是将 alpha 设为 input_scale * per_channel_weight_scale,计算公式是 alpha * conv(qin, qweight)。但是我看 alpha 只能传一个 float,所以 weight 只能做 per-tensor 量化了,这对于精度的影响是比较大的。大佬当初是不是也是因为这个原因所以选择了手动 dequant 呢?
The text was updated successfully, but these errors were encountered:
Hi,大佬我是不敢当. 要不我们加个微信后续交流?wechat: hyfll2
Sorry, something went wrong.
No branches or pull requests
大佬你好,我最近在参考你的 cutlass 写一个 int8 quantized 的 conv。在你的代码中,int8 conv 和 dequantize 是两个 kernel。我想将 DQ fuse 到 conv 中作为一个 kernel 执行以节省访存。我希望借助 DefaultConv2dFprop 中的 EpilogueOp 来实现,也就是将 alpha 设为 input_scale * per_channel_weight_scale,计算公式是 alpha * conv(qin, qweight)。但是我看 alpha 只能传一个 float,所以 weight 只能做 per-tensor 量化了,这对于精度的影响是比较大的。大佬当初是不是也是因为这个原因所以选择了手动 dequant 呢?
The text was updated successfully, but these errors were encountered: