-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathConvertSolar2TFLite.py
134 lines (127 loc) · 4.74 KB
/
ConvertSolar2TFLite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import argparse
import fnmatch
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import pickle
import time
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
import sys
import numpy as np
import onnxruntime as ort
import onnx
import torch
from onnx_tf.backend import prepare
import tensorflow as tf
from torchvision.transforms import functional as F
# from torch.utils.model_zoo import load_url
# from torch.utils.tensorboard import SummaryWriter
# from torchvision import transforms
import cv2
sys.path.append('SOLAR/')
from solar_global.networks.imageretrievalnet import init_network, extract_vectors
from solar_global.datasets.testdataset import configdataset
from solar_global.utils.download import download_test
from solar_global.utils.evaluate import compute_map_and_print
from solar_global.utils.general import get_data_root, htime
from solar_global.utils.networks import load_network
from solar_global.utils.plots import plot_ranks, plot_embeddings
from torchvision import transforms
import time
# from cirtorch.datasets.datahelpers import im_resize
import torch.nn as nn
# class Resize_ratio():
# def __init__(self, imsize):
# self.imsize = imsize
# def __call__(self, image):
# image = im_resize(image, self.imsize)
# return image
class Network(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model.cpu()
self.mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1)
self.std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1)
def forward(self,x):
x = x.permute(0, 3, 1, 2)
x1 = F.resize(x, (300, 300))
out1 = self.model(x1)
reshaped_tensor1 = out1.view(1, 2048)
x2 = F.resize(x, (480, 480))
out2 = self.model(x2)
reshaped_tensor2 = out2.view(1, 2048)
return (reshaped_tensor2 + reshaped_tensor1) / 2
state = torch.load(os.path.join(get_data_root(), 'networks/model_best.pth.tar'))
net_params = {}
net_params['architecture'] = state['meta']['architecture']
net_params['pooling'] = state['meta']['pooling']
net_params['local_whitening'] = state['meta'].get('local_whitening', False)
net_params['regional'] = state['meta'].get('regional', False)
net_params['whitening'] = state['meta'].get('whitening', True)
net_params['mean'] = state['meta']['mean']
net_params['std'] = state['meta']['std']
net_params['pretrained'] = False
net = load_network('model_best.pth.tar')
net.load_state_dict(state['state_dict'])
net.cuda()
net.eval()
test_model = Network(net)
test_model.eval()
img = cv2.imread("/home/anlab/Downloads/F093B51E-58D7-473F-8202-51044F4C7F0F.png")
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
x = cv2.resize(img, (480, 480))
tensor_img = torch.from_numpy(x).float()
tensor_img = tensor_img.unsqueeze(0)
# convert to onnx model
torch_out = test_model(tensor_img)
# print('Out Pytorch',torch_out)
# exit()
onnx_path = "ModelConvert/1910_Solar_fl32_480x480_300x300_Withoutnor.onnx"
torch.onnx.export(test_model,
tensor_img,
onnx_path,
verbose=True,
input_names=["images"],
output_names=["outputs"],
export_params=True,
opset_version = 10
)
# Checker
onnx_model = onnx.load( onnx_path)
onnx.checker.check_model(onnx_model)
tf_path = 'ModelConvert/SOLAR_tf_1910_480x480_300x300_Withoutnor'
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
tf_rep = prepare(onnx_model) #Prepare TF representation
tf_rep.export_graph(tf_path) #Export the model
# convert to tf lite
tf_lite_path = 'ModelConvert/1910_Solar_fl32_480x480_300x300_Withoutnor.tflite'
converter = tf.lite.TFLiteConverter.from_saved_model(tf_path)
# If want Optimize convert float16
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
converter.target_spec.supported_types = [tf.float16]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# done convert float16
tflite_model = converter.convert()
with open(tf_lite_path, 'wb') as f:
f.write(tflite_model)
#test model tflite
tflite_model_path = tf_lite_path
# Load the TFLite model and allocate tensors
interpreter = tf.lite.Interpreter(model_path=tflite_model_path)
interpreter.allocate_tensors()
# Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Test the model on random input data
input_shape = input_details[0]['shape']
print(tensor_img.shape)
input_data = np.array(tensor_img, dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
st = time.time()
interpreter.invoke()
print(time.time()-st)
# get_tensor() returns a copy of the tensor data
# use tensor() in order to get a pointer to the tensor
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)