You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
GIFTEval results concatenation. Added functionality to concatenate results for different datasets when GIFTEval(...).evaluate_predictor(...) is used. See #148.
importpandasaspdfromtimecopilot.gift_eval.evalimportGIFTEvalfromtimecopilot.gift_eval.gluonts_predictorimportGluonTSPredictorfromtimecopilot.models.benchmarksimportSeasonalNaivestorage_path=".pytest_cache/gift_eval"GIFTEval.download_data(storage_path)
predictor=GluonTSPredictor(
forecaster=SeasonalNaive(),
batch_size=512,
)
defevaluate_predictor(
dataset_name: str,
term: str,
overwrite_results: bool=False,
):
gifteval=GIFTEval(
dataset_name=dataset_name,
term=term,
output_path="./seasonal_naive",
storage_path=storage_path,
)
gifteval.evaluate_predictor(
predictor,
batch_size=512,
overwrite_results=overwrite_results,
)
combinations= [
("m4_weekly", "short"),
("m4_hourly", "short"),
]
fori, (dataset_name, term) inenumerate(combinations):
evaluate_predictor(
dataset_name=dataset_name,
term=term,
)
eval_df=pd.read_csv("./seasonal_naive/all_results.csv")
print(eval_df) # it includes eval for the two datasets# you can use overwrite_results to generate a new file of results evaluate_predictor(
dataset_name="m4_weekly",
term="short",
overwrite_results=True
)
eval_df=pd.read_csv("./seasonal_naive/all_results.csv")
print(eval_df) # it includes eval just for m4_weekly
Refactorings
GIFTEval Module: Refactored the GIFTEval module to infer horizon h and frequency freq directly from the dataset when calling GIFTEval(...).evaluate_predictor(...). See #147. New usage:
importpandasaspdfromtimecopilot.gift_eval.evalimportGIFTEvalfromtimecopilot.gift_eval.gluonts_predictorimportGluonTSPredictorfromtimecopilot.models.benchmarksimportSeasonalNaivestorage_path=".pytest_cache/gift_eval"GIFTEval.download_data(storage_path)
predictor=GluonTSPredictor(
# you can use any forecaster from TimeCopilot# and create your own forecaster by subclassing # [Forecaster][timecopilot.models.utils.forecaster.Forecaster]forecaster=SeasonalNaive(),
batch_size=512,
)
gift_eval=GIFTEval(
dataset_name="m4_daily",
term="short",
output_path="./seasonal_naive",
storage_path=storage_path,
)
gift_eval.evaluate_predictor(
predictor,
batch_size=512,
)
eval_df=pd.read_csv("./seasonal_naive/all_results.csv")
print(eval_df)
Median ensemble: Now it applies median plus isotonic regression for probabilistic forecasts. See #149.
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
Uh oh!
There was an error while loading. Please reload this page.
-
Features
Custom seasonalitites. Added
custom_seasonalitiesargument to [get_seasonality][timecopilot.models.utils.forecaster.get_seasonality]. See #147.GIFTEval results concatenation. Added functionality to concatenate results for different datasets when
GIFTEval(...).evaluate_predictor(...)is used. See #148.Refactorings
GIFTEval Module: Refactored the GIFTEval module to infer horizon
hand frequencyfreqdirectly from the dataset when callingGIFTEval(...).evaluate_predictor(...). See #147. New usage:Median ensemble: Now it applies median plus isotonic regression for probabilistic forecasts. See #149.
Full Changelog: AzulGarza/timecopilot@v0.0.12...v0.0.13
This discussion was created from the release v0.0.13.
Beta Was this translation helpful? Give feedback.
All reactions