-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathVehicleDetectionAndTracking.py
172 lines (140 loc) · 6.28 KB
/
VehicleDetectionAndTracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import sys
import numpy as np
from collections import deque
from moviepy.editor import VideoFileClip
from sklearn.utils.linear_assignment_ import linear_assignment
from utilities.VehicleDetector import VehicleDetector
from utilities.VehicleTracker import VehicleTracker
from utilities.BoundingBox import *
class VehicleDetectionAndTracking:
def __init__(self, min_conf=0.6, max_age=2, max_hits=8):
# Initialize constants
self.max_age = max_age # no. of consecutive unmatched detection before a track is deleted
self.min_hits = max_hits # no. of consecutive matches needed to establish a track
self.tracker_list = []
self.track_id_list = deque(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K'])
self.count = 0
# Set up 'Vehicle Detector'
self.detector = VehicleDetector(kitti=False, min_conf=min_conf)
# Method: Used to match detections to trackers
@staticmethod
def match_detections_to_trackers(trackers, detections, min_iou=0.25):
# Initialize 'iou_matrix'
iou_matrix = np.zeros((len(trackers), len(detections)), dtype=np.float32)
# Populate 'iou_matrix'
for t, tracker in enumerate(trackers):
for d, detection in enumerate(detections):
iou_matrix[t, d] = box_iou_ratio(tracker, detection)
# Produce matches by using the Hungarian algorithm to maximize the sum of IOU
matched_index = linear_assignment(-iou_matrix)
# Populate 'unmatched_trackers'
unmatched_trackers = []
for t in np.arange(len(trackers)):
if t not in matched_index[:, 0]:
unmatched_trackers.append(t)
# Populate 'unmatched_detections'
unmatched_detections = []
for d in np.arange(len(detections)):
if d not in matched_index[:, 1]:
unmatched_detections.append(d)
# Populate 'matches'
matches = []
for m in matched_index:
# Create tracker if IOU is greater than 'min_iou'
if iou_matrix[m[0], m[1]] > min_iou:
matches.append(m.reshape(1, 2))
else:
unmatched_trackers.append(m[0])
unmatched_detections.append(m[1])
if matches:
# Concatenate arrays on the same axis
matches = np.concatenate(matches, axis=0)
else:
matches = np.empty((0, 2), dtype=int)
# Return matches, unmatched detection and unmatched trackers
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
# Method: Used as a 'pipeline' function for detection and tracking
def pipeline(self, image):
# Get bounding boxes for located vehicles
det_boxes = self.detector.get_bounding_box_locations(image)
# Get list of tracker bounding boxes
trk_boxes = []
if self.tracker_list:
for tracker in self.tracker_list:
trk_boxes.append(tracker.box)
# Match detected vehicles to trackers
matched, unmatched_dets, unmatched_trks = self.match_detections_to_trackers(trk_boxes, det_boxes)
# Deal with matched detections
if len(matched) > 0:
for trk_idx, det_idx in matched:
z = det_boxes[det_idx]
z = np.expand_dims(z, axis=0).T
temp_trk = self.tracker_list[trk_idx]
temp_trk.predict_and_update(z)
xx = temp_trk.x_state.T[0].tolist()
xx = [xx[0], xx[2], xx[4], xx[6]]
trk_boxes[trk_idx] = xx
temp_trk.box = xx
temp_trk.num_hits += 1
# Deal with unmatched detections
if len(unmatched_dets) > 0:
for i in unmatched_dets:
z = det_boxes[i]
z = np.expand_dims(z, axis=0).T
temp_trk = VehicleTracker() # Create a new tracker
x = np.array([[z[0], 0, z[1], 0, z[2], 0, z[3], 0]]).T
temp_trk.x_state = x
temp_trk.predict()
xx = temp_trk.x_state
xx = xx.T[0].tolist()
xx = [xx[0], xx[2], xx[4], xx[6]]
temp_trk.box = xx
temp_trk.id = self.track_id_list.popleft() # assign an ID for the tracker
self.tracker_list.append(temp_trk)
trk_boxes.append(xx)
# Deal with unmatched tracks
if len(unmatched_trks) > 0:
for i in unmatched_trks:
temp_trk = self.tracker_list[i]
temp_trk.num_unmatched += 1
temp_trk.predict()
xx = temp_trk.x_state
xx = xx.T[0].tolist()
xx = [xx[0], xx[2], xx[4], xx[6]]
temp_trk.box = xx
trk_boxes[i] = xx
# Populate the list of trackers to be displayed on the image
good_tracker_list = []
for tracker in self.tracker_list:
if tracker.num_hits >= self.min_hits and tracker.num_unmatched <= self.max_age:
good_tracker_list.append(tracker)
tracker_bb = tracker.box
# Draw bounding box on the image
image = draw_box_label(image, tracker_bb)
self.count += 1
# Find list of trackers to be deleted
deleted_trackers = filter(lambda x: x.num_unmatched > self.max_age, self.tracker_list)
for tracker in deleted_trackers:
self.track_id_list.append(tracker.id)
# Update list of active trackers
self.tracker_list = [x for x in self.tracker_list if x.num_unmatched <= self.max_age]
return image
# Method: Used to end VideoFileClip processes
@staticmethod
def close_clip(clip):
try:
clip.reader.close()
del clip.reader
if clip.audio is not None:
clip.audio.reader.close_proc()
del clip.audio
del clip
except Exception:
sys.exc_clear()
vdt = VehicleDetectionAndTracking(min_conf=0.8, max_age=2, max_hits=8)
output = 'video1_short_out_80.mp4'
input_vid = VideoFileClip('videos/video1_short.mp4')
output_vid = input_vid.fl_image(vdt.pipeline)
output_vid.write_videofile(output, threads=4, audio=False)
vdt.close_clip(output_vid)
print(vdt.count)