This repository has been archived by the owner on Apr 4, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathdatasets.py
75 lines (61 loc) · 1.8 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import glob
from PIL import Image
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as T
import config as c
from natsort import natsorted
def to_rgb(image):
rgb_image = Image.new("RGB", image.size)
rgb_image.paste(image)
return rgb_image
class Hinet_Dataset(Dataset):
def __init__(self, transforms_=None, mode="train"):
self.transform = transforms_
self.mode = mode
if mode == 'train':
# train
self.files = natsorted(sorted(glob.glob(c.TRAIN_PATH + "/*." + c.format_train)))
else:
# test
self.files = sorted(glob.glob(c.VAL_PATH + "/*." + c.format_val))
def __getitem__(self, index):
try:
image = Image.open(self.files[index])
image = to_rgb(image)
item = self.transform(image)
return item
except:
return self.__getitem__(index + 1)
def __len__(self):
if self.mode == 'shuffle':
return max(len(self.files_cover), len(self.files_secret))
else:
return len(self.files)
transform = T.Compose([
T.RandomHorizontalFlip(),
T.RandomVerticalFlip(),
T.RandomCrop(c.cropsize),
T.ToTensor()
])
transform_val = T.Compose([
T.CenterCrop(c.cropsize_val),
T.ToTensor(),
])
# Training data loader
trainloader = DataLoader(
Hinet_Dataset(transforms_=transform, mode="train"),
batch_size=c.batch_size,
shuffle=True,
pin_memory=True,
num_workers=8,
drop_last=True
)
# Test data loader
testloader = DataLoader(
Hinet_Dataset(transforms_=transform_val, mode="val"),
batch_size=c.batchsize_val,
shuffle=False,
pin_memory=True,
num_workers=1,
drop_last=True
)