-
Notifications
You must be signed in to change notification settings - Fork 68
/
app.py
473 lines (426 loc) · 19.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import gradio as gr
from diffusers import DiffusionPipeline, LCMScheduler
import torch
import base64
from io import BytesIO
import os
import gc
import warnings
# Only used when MULTI_GPU set to True
from helper import UNetDataParallel
from share_btn import community_icon_html, loading_icon_html, share_js
# SDXL code: https://github.com/huggingface/diffusers/pull/3859
# Process environment variables
# Use `segmind/SSD-1B` (distilled SDXL) for faster generation.
use_ssd = os.getenv("USE_SSD", "false").lower() == "true"
if use_ssd:
model_key_base = "segmind/SSD-1B"
model_key_refiner = "stabilityai/stable-diffusion-xl-refiner-1.0"
lcm_lora_id = "latent-consistency/lcm-lora-ssd-1b"
else:
model_key_base = "stabilityai/stable-diffusion-xl-base-1.0"
model_key_refiner = "stabilityai/stable-diffusion-xl-refiner-1.0"
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
# Use LCM LoRA (enabled by default)
if "ENABLE_LCM" not in os.environ:
warnings.warn("`ENABLE_LCM` environment variable is not set. LCM LoRA will be loaded by default and refiner will be disabled by default. You can set it to `False` to turn off LCM LoRA.")
enable_lcm = os.getenv("ENABLE_LCM", "true").lower() == "true"
# Use refiner (disabled by default if LCM is enabled)
enable_refiner = os.getenv("ENABLE_REFINER", "false" if enable_lcm or use_ssd else "true").lower() == "true"
# Output images before the refiner and after the refiner
output_images_before_refiner = os.getenv("OUTPUT_IMAGES_BEFORE_REFINER", "false").lower() == "true"
offload_base = os.getenv("OFFLOAD_BASE", "false").lower() == "true"
offload_refiner = os.getenv("OFFLOAD_REFINER", "true").lower() == "true"
# Generate how many images by default
default_num_images = int(os.getenv("DEFAULT_NUM_IMAGES", "4"))
if default_num_images < 1:
default_num_images = 1
# Create public link
share = os.getenv("SHARE", "false").lower() == "true"
print("Loading model", model_key_base)
pipe = DiffusionPipeline.from_pretrained(model_key_base, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
if enable_lcm:
pipe.load_lora_weights(lcm_lora_id)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
multi_gpu = os.getenv("MULTI_GPU", "false").lower() == "true"
if multi_gpu:
pipe.unet = UNetDataParallel(pipe.unet)
pipe.unet.config, pipe.unet.dtype, pipe.unet.add_embedding = pipe.unet.module.config, pipe.unet.module.dtype, pipe.unet.module.add_embedding
pipe.to("cuda")
else:
if offload_base:
pipe.enable_model_cpu_offload()
else:
pipe.to("cuda")
# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
if enable_refiner:
print("Loading model", model_key_refiner)
pipe_refiner = DiffusionPipeline.from_pretrained(model_key_refiner, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
if multi_gpu:
pipe_refiner.unet = UNetDataParallel(pipe_refiner.unet)
pipe_refiner.unet.config, pipe_refiner.unet.dtype, pipe_refiner.unet.add_embedding = pipe_refiner.unet.module.config, pipe_refiner.unet.module.dtype, pipe_refiner.unet.module.add_embedding
pipe_refiner.to("cuda")
else:
if offload_refiner:
pipe_refiner.enable_model_cpu_offload()
else:
pipe_refiner.to("cuda")
# if using torch < 2.0
# pipe_refiner.enable_xformers_memory_efficient_attention()
# pipe_refiner.unet = torch.compile(pipe_refiner.unet, mode="reduce-overhead", fullgraph=True)
# NOTE: we do not have word list filtering in this gradio demo
is_gpu_busy = False
def infer(prompt, negative, scale, samples=4, steps=50, refiner_strength=0.3, seed=-1):
prompt, negative = [prompt] * samples, [negative] * samples
g = torch.Generator(device="cuda")
if seed != -1:
g.manual_seed(seed)
else:
g.seed()
images_b64_list = []
if not enable_refiner or output_images_before_refiner:
images = pipe(prompt=prompt, negative_prompt=negative, guidance_scale=scale, num_inference_steps=steps, generator=g).images
else:
# This skips the decoding and re-encoding for refinement.
images = pipe(prompt=prompt, negative_prompt=negative, guidance_scale=scale, num_inference_steps=steps, output_type="latent", generator=g).images
gc.collect()
torch.cuda.empty_cache()
if enable_refiner:
if output_images_before_refiner:
for image in images:
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
image_b64 = (f"data:image/jpeg;base64,{img_str}")
images_b64_list.append(image_b64)
images = pipe_refiner(prompt=prompt, negative_prompt=negative, image=images, num_inference_steps=steps, strength=refiner_strength, generator=g).images
gc.collect()
torch.cuda.empty_cache()
for image in images:
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
image_b64 = (f"data:image/jpeg;base64,{img_str}")
images_b64_list.append(image_b64)
return images_b64_list
# Reference: https://huggingface.co/spaces/google/sdxl/blob/main/app.py#L139
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.gradio-container {
max-width: 730px !important;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 10px 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px;
margin-left: auto;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
margin: 0 10px 0 0;
}
#generate-image-btn {
margin: 0 0 0 10px;
}
#prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
#component-16{border-top-width: 1px!important;margin-top: 1em}
.image_duplication{position: absolute; width: 100px; left: 50px}
"""
block = gr.Blocks(css=css)
default_guidance_scale = 1 if enable_lcm else 9
examples = [
[
'A high tech solarpunk utopia in the Amazon rainforest',
'low quality',
default_guidance_scale
],
[
'A pikachu fine dining with a view to the Eiffel Tower',
'low quality',
default_guidance_scale
],
[
'A mecha robot in a favela in expressionist style',
'low quality, 3d, photorealistic',
default_guidance_scale
],
[
'an insect robot preparing a delicious meal',
'low quality, illustration',
default_guidance_scale
],
[
"A small cabin on top of a snowy mountain in the style of Disney, artstation",
'low quality, ugly',
default_guidance_scale
],
]
with block:
gr.HTML(
f"""
<div style="text-align: center; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<svg
width="0.65em"
height="0.65em"
viewBox="0 0 115 115"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<rect width="23" height="23" fill="white"></rect>
<rect y="69" width="23" height="23" fill="white"></rect>
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="46" width="23" height="23" fill="white"></rect>
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" width="23" height="23" fill="black"></rect>
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
</svg>
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
Stable Diffusion XL 1.0 Demo
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
Stable Diffusion XL 1.0 is the latest text-to-image model from StabilityAI.
<br/>
Source code of this space is on
<a
href="https://github.com/TonyLianLong/stable-diffusion-xl-demo"
style="text-decoration: underline;"
target="_blank"
>TonyLianLong/stable-diffusion-xl-demo</a>.
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row(elem_id="prompt-container", equal_height=True, style=dict(mobile_collapse=False)):
with gr.Column():
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
elem_id="prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
negative = gr.Textbox(
label="Enter your negative prompt",
show_label=False,
max_lines=1,
placeholder="Enter a negative prompt",
elem_id="negative-prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image", elem_id="generate-image-btn").style(
rounded=(False, True, True, False),
full_width=False,
)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
with gr.Group(elem_id="container-advanced-btns"):
#advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Accordion("Advanced settings", open=False):
# gr.Markdown("Advanced settings are temporarily unavailable")
samples = gr.Slider(label="Images", minimum=1, maximum=max(16 if enable_lcm else 4, default_num_images), value=default_num_images, step=1)
if enable_lcm:
steps = gr.Slider(label="Steps", minimum=1, maximum=10, value=4, step=1)
else:
steps = gr.Slider(label="Steps", minimum=1, maximum=250, value=50, step=1)
if enable_refiner:
refiner_strength = gr.Slider(label="Refiner Strength", minimum=0, maximum=1.0, value=0.3, step=0.1)
else:
refiner_strength = gr.Slider(label="Refiner Strength (refiner not enabled)", minimum=0, maximum=0, value=0, step=0)
guidance_scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=50, value=default_guidance_scale, step=0.1
)
seed = gr.Slider(
label="Seed",
minimum=-1,
maximum=2147483647,
step=1,
randomize=True,
)
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, negative, guidance_scale], outputs=[gallery, community_icon, loading_icon, share_button], cache_examples=False)
ex.dataset.headers = [""]
negative.submit(infer, inputs=[text, negative, guidance_scale, samples, steps, refiner_strength, seed], outputs=[gallery], postprocess=False)
text.submit(infer, inputs=[text, negative, guidance_scale, samples, steps, refiner_strength, seed], outputs=[gallery], postprocess=False)
btn.click(infer, inputs=[text, negative, guidance_scale, samples, steps, refiner_strength, seed], outputs=[gallery], postprocess=False)
#advanced_button.click(
# None,
# [],
# text,
# _js="""
# () => {
# const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
# options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
# }""",
#)
share_button.click(
None,
[],
[],
_js=share_js,
)
gr.HTML(
f"""
<div class="footer">
<p>
This space uses {model_key_base} model{" with " + lcm_lora_id + " LCM LoRA" if enable_lcm else ""}. - Gradio Demo by 🤗 Hugging Face and <a style="text-decoration: underline;" href="https://tonylian.com/">Long (Tony) Lian</a> <br/>
</p>
</div>
"""
)
with gr.Accordion(label="License", open=False):
gr.HTML(
"""<div class="acknowledgments">
<p><h4>LICENSE</h4>
The SDXL 1.0 model is licensed with a <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md" style="text-decoration: underline;" target="_blank">Stability AI CreativeML Open RAIL++-M</a> license. The License allows users to take advantage of the model in a wide range of settings (including free use and redistribution) as long as they respect the specific use case restrictions outlined, which correspond to model applications the licensor deems ill-suited for the model or are likely to cause harm. For the full list of restrictions please <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md" style="text-decoration: underline;" target="_blank">read the license</a>.
<p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0" style="text-decoration: underline;" target="_blank">model card</a></p>
</div>
"""
)
block.queue().launch(share=share)