-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrun_report_generation.py
922 lines (785 loc) · 29.4 KB
/
run_report_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
import os
import re
import json
from glob import glob
from typing import List, Union, Dict, Any
from itertools import product
import pandas as pd
import numpy as np
from tqdm import tqdm
# imports from normits demand
from normits_demand import ExternalForecastSystem
from normits_demand import efs_constants as consts
from normits_demand.utils import general as du, sector_reporter_v2 as sr_v2
from normits_demand.reports import reports_utils as ru
from normits_demand.matrices import matrix_processing as mat_p
from normits_demand.concurrency import multiprocessing
def _maybe_aggregate_matrices(import_dir,
export_dir,
trip_origin,
matrix_format,
years_needed,
p_needed,
m_needed,
soc_needed,
ns_needed,
ca_needed,
tp_needed
) -> None:
"""
Checks to see if the aggregation actually needs to take place. If not,
just copies over the already existing matrices.
Much faster than calling aggregate_matrices() if it's not needed!
"""
# ## GENERATE THE NEEDED MATRIX NAMES ## #
loop_generator = du.cp_segmentation_loop_generator(
p_list=p_needed,
m_list=m_needed,
soc_list=soc_needed,
ns_list=ns_needed,
ca_list=ca_needed,
tp_list=tp_needed
)
# Loop through all the combinations
mat_names = list()
for year in years_needed:
for calib_params in loop_generator:
# Add year
calib_params['yr'] = year
mat_names.append(du.calib_params_to_dist_name(
trip_origin=trip_origin,
matrix_format=matrix_format,
calib_params=calib_params,
csv=True
))
# ## ONLY AGGREGATE IF ALL NEEDED MATRICES DON'T EXIST ## #
existing_mat_names = [x for x in os.listdir(import_dir) if '.csv' in x]
if existing_mat_names == list():
raise FileNotFoundError("Could not find any existing matrices at: %s"
% import_dir)
if all([name in existing_mat_names for name in mat_names]):
# All matrices we need already exist. Just copy over!
print("No need to aggregate - just copying over...")
# ## MULTIPROCESS ## #
kwargs_list = list()
for name in mat_names:
kwargs_list.append({
'src': os.path.join(import_dir, name),
'dst': export_dir
})
multiprocessing.multiprocess(
fn=du.copy_and_rename,
kwargs=kwargs_list,
process_count=consts.PROCESS_COUNT
)
else:
# We're gonna have to aggregate to make the matrices we need
print("Aggregating matrices...")
mat_p.aggregate_matrices(
import_dir=import_dir,
export_dir=export_dir,
trip_origin=trip_origin,
matrix_format=matrix_format,
years_needed=years_needed,
p_needed=p_needed,
m_needed=m_needed,
soc_needed=soc_needed,
ns_needed=ns_needed,
ca_needed=ca_needed,
tp_needed=tp_needed,
)
def matrix_reporting(matrix_directory: str,
output_dir: str,
trip_origin: str,
matrix_format: str,
segments_needed: dict = None,
zone_file: str = None,
sectors_files: List[str] = None, # Should be a dict?
zones_name: str = "model",
aggregation_method: str = "sum",
tld_path: str = None,
cost_path: str = None,
overwrite_dir: bool = True,
collate_years: bool = False,
):
"""
TODO: write documentataion
TODO: Remove mutable types from default args
Options to aggregate any matrix segment.
Either select the segment names to keep or supply "Agg"
to keep disaggregated or "Keep" to aggregate this field
Option to aggregate sectors
segments_needed can have the keys:
years, p, m, soc, ns, ca, tp
where each is a list of the required segments
"""
# Init
if segments_needed is None:
segments_needed = dict()
success = True
# Check Inputs are valid
if trip_origin not in consts.VDM_TRIP_ORIGINS:
raise ValueError(f"{trip_origin} is not a valid option")
if matrix_format not in consts.VALID_MATRIX_FORMATS:
raise ValueError(f"{matrix_format} is not a valid option")
for sectors_file in sectors_files.values():
if sectors_file is not None and not os.path.isfile(sectors_file):
raise ValueError(f"{sectors_file} does not exist")
sectors_names = list(sectors_files.keys())
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
if overwrite_dir:
for file_name in glob(os.path.join(output_dir, "*.csv")):
os.remove(file_name)
# Get the lists of all segments
all_segments = {
"years": consts.FUTURE_YEARS,
"p": consts.ALL_HB_P if trip_origin == "hb" else consts.ALL_NHB_P,
"m": consts.ALL_MODES,
"soc": consts.SOC_NEEDED,
"ns": consts.NS_NEEDED,
"ca": consts.CA_NEEDED,
"tp": consts.TIME_PERIODS
}
# Parse the input segments
# Checks are done on the supplied segments in the aggregation stage
parsed_segments = {}
for segment in all_segments:
parsed_segments[segment] = parse_segments(
segments_needed.get(segment),
all_segments[segment]
)
# Aggregate the matrices
sectored_output_files = []
overwrite_tld = True
for year in tqdm(parsed_segments["years"], desc="Aggregating by Year"):
try:
# TODO add aggregation_method to this function
_maybe_aggregate_matrices(
import_dir=matrix_directory,
export_dir=output_dir,
trip_origin=trip_origin,
matrix_format=matrix_format,
years_needed=[year],
p_needed=parsed_segments["p"],
m_needed=parsed_segments["m"],
soc_needed=parsed_segments["soc"],
ns_needed=parsed_segments["ns"],
ca_needed=parsed_segments["ca"],
tp_needed=parsed_segments["tp"]
)
except AttributeError as e:
# If there are no matrices available for these segments
print("ERROR::MISSING_SEGMENTS! Did you pass in the correct "
".json file??")
print(e)
success = False
# Get a list of the matrices coped over
output_files = glob(os.path.join(output_dir, "*.csv"))
output_files = [x for x in output_files if not du.is_in_string(sectors_names, x)]
mat_files = [os.path.basename(x) for x in output_files]
# Extract the trip length distributions
if cost_path is not None and tld_path is not None:
tld_reporting(
output_dir,
mat_files,
matrix_format,
tld_path=tld_path,
cost_lookup_path=cost_path,
overwrite=overwrite_tld
)
overwrite_tld = False
# Aggregate sectors if required
if sectors_files is not None:
sr = sr_v2.SectorReporter()
valid_files = output_files.copy()
output_files = list()
pbar = tqdm(
desc="Aggregating sectors",
total=len(valid_files) * len(sectors_files)
)
for sectors_name, sectors_file in sectors_files.items():
for matrix_file in valid_files:
if matrix_file in sectored_output_files:
continue
# Write the sectored matrices in place
sr.aggregate_matrix_sectors(
matrix_file,
zone_system_name=zones_name,
zone_system_file=zone_file,
sector_grouping_file=sectors_file,
sector_system_name=sectors_name,
aggregation_method=aggregation_method
)
suffix = f"_{sectors_name}.csv"
new_file = matrix_file.replace(".csv", suffix)
sectored_output_files.append(new_file)
os.replace(matrix_file, new_file)
pbar.update(1)
# Collate the sectored files into one for easier use in Power BI etc.
concat_matrix_folder(output_dir, matrix_format)
if collate_years:
# Create a GIS format report
generate_gis_report(
sectored_output_files,
parsed_segments["years"],
parsed_segments["p"]
)
return success
def generate_gis_report(all_files: List[int],
years_needed: List[int],
purposes_needed: List[int],
aggregate_purposes: bool = True,
aggregate_years: bool = True):
"""Collates aggregated matrices together to create a single report file
that can be easily read by GIS programs
Parameters
----------
all_files : List[int]
List of all aggregated matrix files to include in the report.
Should all be the same format
years_needed : List[int]
List of years to include.
purposes_needed : List[int]
List of purposes to include.
aggregate_purposes : bool, optional
Wh, by default True
aggregate_years : bool, optional
[description], by default True
"""
# Get the base file names so that purpose and year can be combined to
# one file
replaces = (
("_p", "{purpose}"),
("_yr", "{year}")
)
re_string = r"(?<={old})(\d+)"
base_files = all_files.copy()
for old, new in replaces:
base_files = set(
[
re.sub(re_string.format(old=old), new, x)
for x in base_files
]
)
# Loop over all required segments and aggregate to a stacked matrix for GIS
# format
for file_base in tqdm(base_files, desc="Generating GIS Reports"):
trip_ends = pd.DataFrame()
matrix = pd.DataFrame()
for year, purpose in tqdm(product(years_needed, purposes_needed)):
file_name = file_base.format(
year=year,
purpose=purpose
)
try:
df = pd.read_csv(file_name, index_col=0).stack()
except FileNotFoundError:
# Warn that the file was not found, but this is likely
# because of a soc/ns segment mismatch
print(f"Warning: File {file_name} does not exist")
continue
df.columns = ["v"]
if matrix.empty:
matrix = pd.DataFrame(index=df.index)
column_name = f"{year}_p{purpose}"
matrix[column_name] = df
if aggregate_purposes:
years = [str(x) for x in years_needed]
for year in years:
matrix[year] = matrix[
[col for col in matrix.columns if year in col]
].sum(axis=1)
if aggregate_years:
purposes = [str(x) for x in purposes_needed]
for purpose in purposes:
matrix[purpose] = matrix[
[col for col in matrix.columns if f"_p{purpose}" in col]
].sum(axis=1)
trip_ends = matrix.groupby(level=0).sum().merge(
matrix.groupby(level=1).sum(),
left_index=True,
right_index=True,
suffixes=("_o", "_d"),
)
out_file = file_base.format(year="_all", purpose="_all")
trip_ends.to_csv(out_file.replace(".csv", "_te_gis_report.csv"))
matrix.to_csv(out_file.replace(".csv", "_gis_report.csv"))
def parse_segments(required_segments: Union[List[int], str],
all_segments: List[int]):
"""Converts required segment strings into those expected by
aggregate_matrices
Parameters
----------
required_segments : Union[List[int], str]
Unparsed segment arguments can be a list of segments or
"Keep" or "Agg"
all_segments : List[int]
List of all possible segments
Returns
-------
List[int] or None
Parsed segments for the aggregate_matrices function
"""
# If the segment is to be aggregated then pass None
if required_segments == "Agg":
return None
elif required_segments == "Keep":
return all_segments
else:
return required_segments
def _tld_reporting_internal(mat_dict,
matrix_type,
matrix_dir,
tld_path,
cost_lookup_path,
output_dir,
) -> None:
# Extract trip matrix info for each file
mat_name = mat_dict.pop("matrix")
print(". Generating tld report for: %s" % mat_name)
matrix = pd.read_csv(os.path.join(matrix_dir, mat_name))
# Extract segments if they exist - remove from calib params if needed
# purpose, mode, segment(optional) required in tlb function
trip_origin = mat_dict.pop("trip_origin")
year = mat_dict.pop("yr")
purpose = mat_dict.get("p")
mode = mat_dict.get("m")
soc = mat_dict.get("soc")
ns = mat_dict.get("ns")
ca = mat_dict.pop("ca", None)
# Choose the correct segmentation for tlb and dist names
# Non-home based in "standard_segments" can use tp to select tlb
# Time period is not an option otherwise
if soc is None and ns is None:
seg_tld_path = os.path.join(tld_path, "standard_segments")
segment = None
if trip_origin == "hb":
tp = mat_dict.pop("tp", None)
else:
tp = mat_dict.get("tp")
else:
seg_tld_path = os.path.join(tld_path, "enhanced_segments")
segment = soc if du.is_none_like(ns) else ns
tp = mat_dict.pop("tp", None)
for item, dat in mat_dict.items():
if dat.isnumeric():
mat_dict.update({item: int(dat)})
# Get the relevant trip length bands
# Some legacy code here - "ntem"
# TODO Use the year here to get the forecast/base tlb when they exist
year_tld_path = seg_tld_path
tlb = du.get_trip_length_bands(year_tld_path, mat_dict, "ntem", trip_origin, replace_nan=False)
# Set the string sent to the costs function
# BACKLOG: fix for NORMS tp costs - do not exist at the moment
# labels: missing data
tp_str = "24hr" if tp is None else "tp"
tp_str = "24hr"
_ = str(mat_dict.pop("tp", None))
# Get the cost data for the purpose/mode
costs, cost_name = du.get_costs(
cost_lookup_path,
mat_dict,
tp=tp_str,
iz_infill=0.5
)
# Convert to a square numpy matrix
unq_zones = list(range(1, (costs[list(costs)[0]].max()) + 1))
costs = du.df_to_np(
costs,
v_heading='p_zone',
h_heading='a_zone',
values='cost',
unq_internal_zones=unq_zones,
echo=False
)
matrix = matrix.drop(list(matrix)[0], axis=1).values
# This matches the shape to the NORMS cost zones
if costs.shape != matrix.shape:
print(
"WARNING - Padded matrix to match costs shape "
+ str(matrix.shape) + " -> " + str(costs.shape)
)
pad_matrix = np.zeros(costs.shape)
pad_matrix[:matrix.shape[0], :matrix.shape[1]] = matrix
else:
pad_matrix = matrix
# Get trip length by band
(trip_lengths_by_band_km,
band_shares_by_band,
average_trip_length) = ru.get_trip_length_by_band(tlb,
costs,
pad_matrix)
# Merge into single dataframe on the band index
tld_results = trip_lengths_by_band_km.merge(
band_shares_by_band,
on="tlb_index"
).fillna(0.0)
# Save individual bands and band shares to separate csv files
out_file = du.get_dist_name(
trip_origin,
matrix_type,
year,
purpose,
mode,
segment=segment,
car_availability=ca,
tp=tp,
csv=True,
suffix="_tld"
)
out_file = os.path.join(output_dir, out_file)
tld_results.to_csv(out_file, index=False)
def tld_reporting(matrix_dir: str,
matrix_files: List[str],
matrix_type: str,
tld_path: str,
cost_lookup_path: str,
overwrite: bool = True):
"""Generates the trip length distributions of a directory of matrices
Parameters
----------
matrix_dir : str
Path to the directory containing EFS format matrices
matrix_type : str
"pa" or "od"
tld_path : str
Path to the trip length band folder
cost_lookup_path : str
Path to the base cost folder
"""
print("Getting trip length distributions...")
# Create the tld directory if it doesn't exist
output_dir = os.path.join(matrix_dir, "tld")
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
if overwrite:
for file_name in glob(os.path.join(output_dir, "*.csv")):
os.remove(file_name)
# Loop through all matrices, pulling the trip length dists as required
# matrices = os.listdir(matrix_dir)
matrices = matrix_files
mat_df = du.parse_mat_output(
matrices,
sep="_",
mat_type=matrix_type,
file_format=".csv",
file_name="matrix"
)
# ## GENERATE TLD REPORTS FOR EACH SEGMENTATION ## #
# Init args that are the same for each function call
unchanging_kwargs = {
'matrix_type': matrix_type,
'matrix_dir': matrix_dir,
'tld_path': tld_path,
'cost_lookup_path': cost_lookup_path,
'output_dir': output_dir,
}
# Generate the changing arguments, and build list of kwargs
kwarg_list = list()
for _, mat_desc in mat_df.iterrows():
kwargs = unchanging_kwargs.copy()
kwargs['mat_dict'] = mat_desc.to_dict()
kwarg_list.append(kwargs)
# Call the function
multiprocessing.multiprocess(
fn=_tld_reporting_internal,
kwargs=kwarg_list,
process_count=consts.PROCESS_COUNT,
# process_count=0,
)
# Concatenate all files into a single stacked csv
concat_vector_folder(
output_dir,
matrix_type=matrix_type,
output_name="tld_dists.csv"
)
def concat_vector_folder(data_dir: str,
matrix_type: str,
output_name: str = None):
"""Concatenates a folder of "long" format .csv files to a single file
Parameters
----------
data_dir : str
Path to the directory containing the CSV files
matrix_type : str
The matrix type - "pa" or "od"
output_name : str, optional
Name of the concatenated output file, by default None
"""
# Override default file name
output_name = output_name or "concatenated_data.csv"
# Fetch a list of all .csv files in the directory
files = os.listdir(data_dir)
file_df = du.parse_mat_output(
files,
sep="_",
mat_type=matrix_type,
file_format=".csv",
file_name="file"
)
vector_df = pd.DataFrame()
for _, row in file_df.iterrows():
single_vector = pd.read_csv(
os.path.join(data_dir, row.pop("file"))
)
# Add additional columns for each segment e.g. purpose, mode, soc/ns
for key, value in row.items():
single_vector[key] = value
if vector_df.empty:
vector_df = single_vector
else:
vector_df = pd.concat(
(vector_df, single_vector),
axis=0
)
# Remove columns that just contain "none" - e.g. suffixes on the file name
vector_df = vector_df[
[col for col in vector_df
if next(iter(set(vector_df[col]))) != "none"]
]
vector_df.to_csv(
os.path.join(data_dir, output_name),
index=False
)
# TODO add option to remove individual files if needed
def concat_matrix_folder(data_dir: str,
matrix_type: str,
output_name: str = None):
"""Concatenates a folder of "wide" format .csv files to a single file
Parameters
----------
data_dir : str
Path to the directory containing the CSV files
matrix_type : str
The matrix type - "pa" or "od"
output_name : str, optional
Name of the concatenated output file, by default None
"""
# Override default file name
output_name = output_name or "tfn_sectors_combined.csv"
# Fetch a list of all .csv files in the directory
files = os.listdir(data_dir)
file_df = du.parse_mat_output(
files,
sep="_",
mat_type=matrix_type,
file_format=".csv",
file_name="file"
)
vector_df = pd.DataFrame()
for _, row in file_df.iterrows():
single_vector = pd.read_csv(
os.path.join(data_dir, row.pop("file")),
index_col=0
)
single_vector = single_vector.stack().reset_index()
single_vector.columns = ["origin", "destination", "demand"]
# Add additional columns for each segment e.g. purpose, mode, soc/ns
for key, value in row.items():
single_vector[key] = value
if vector_df.empty:
vector_df = single_vector
else:
vector_df = pd.concat(
(vector_df, single_vector),
axis=0
)
# Remove columns that just contain "none" - e.g. suffixes on the file name
vector_df = vector_df[
[col for col in vector_df
if next(iter(set(vector_df[col]))) != "none"]
]
vector_df.to_csv(
os.path.join(data_dir, output_name),
index=False
)
def load_report_params(param_file: str) -> Union[List[Any], Dict[str, Any]]:
"""Load report generation parameters from file.
Allows a number of options to be set in a json file.
Parameters
----------
param_file : str
Path to the options file - json format.
Should contain the required keys:
- "matrix_directories" - dictionary containing a key of either pa or
od, with the corresponding key in the efs_exports dictionary from the
EFS
- "output_dir" - Subdirectory within EFS efs_exports["reports"] that the
reports will be saved to
- "matrix_format" - One of "pa" or "od"
- "trip_origin" - "One of "hb" or "nhb"
- "segments_needed": {
"years": List of years to keep
"p": List of purpose ids to keep
"m": List of mode ids to keep
"soc": List of soc to keep
"ns": List of ns to keep
"ca": List of ca to keep
"tp": List of tp to keep
}- Any segment can be "Keep" or "Agg" to either keep disaggregated
or to aggregate all of that segment together
- "zones_file" - Dummy zones fileto supply to sector reporter
- "sectors_files" - List of sector files within
imports["zone_translation"] that is used as the output zone systems
- "cost_path" - Path within imports["home"] that contains the relevant
costs for the matrices.
- "tld_path" - Path within imports["home"] that contains the trip
length bands.
Raises
------
FileNotFoundError
If the json file does not exist
"""
if os.path.isfile(param_file):
with open(param_file) as f:
params = json.load(f)
else:
raise FileNotFoundError("Parameter File Does Not Exist")
return params
def check_params(parameters: dict,
imports: dict,
exports: dict
):
segments = [
"years",
"p",
"m",
"soc",
"ns",
"ca",
"tp"
]
#
required_keys = {
"matrix_directories": ["keys", ["pa", "od"],
"values", ["pa", "od", "pa_24", "od_24"]],
"trip_origin": ["str", consts.VDM_TRIP_ORIGINS],
"matrix_format": ["str", consts.VALID_MATRIX_FORMATS],
"segments_needed": ["keys", segments,
"values", ["Keep", "Agg"]],
"output_dir": ["str", []],
"zones_file": ["path", imports["zone_translation"]['home']],
"tld_path": ["path", imports["home"]],
"cost_path": ["path", imports["home"]],
"overwrite_outputs": ["bool", []],
"collate_years": ["bool", []],
"sectors_names": ["str", []],
"sectors_files": ["path", imports["zone_translation"]['one_to_one']]
}
for param, check in required_keys.items():
if param not in parameters:
raise ValueError(f"{param} not in the parameter file "
f"- should be {check[0]}")
param_type = check[0]
if param_type == "str" and len(check[1]) > 0:
value = parameters[param]
if value not in check[1]:
raise ValueError(f"Invalid value for {param}: {value}")
elif param_type == "path":
paths = parameters[param]
if not isinstance(paths, list):
paths = [paths]
for path in paths:
value = os.path.join(check[1], path)
if not os.path.exists(value):
raise ValueError(f"Invalid path for {param}: {value}")
elif param_type == "keys":
valid_keys = check[1]
valid_values = check[3]
param_keys = list(parameters[param].keys())
param_values = list(parameters[param].values())
if not all([key in valid_keys for key in param_keys]):
print(f"{param} must contain only: ", valid_keys)
raise ValueError(f"Invalid value for {param}")
if not all([value in valid_values or isinstance(value, list)
for value in param_values]):
print(f"{param} must contain only: ", valid_values)
raise ValueError(f"Invalid value for {param}")
print("Parameters OK")
def main(param_file: str,
imports: dict,
exports: dict,
model_name: str):
"""Reads in a parameter file (JSON) and creates the defined matrix
summaries
Parameters
----------
param_file : str
Path to the parameter JSON file. See load_report_params
for requirements
"""
params = load_report_params(param_file)
check_params(params, imports, exports)
errors = []
overwrite = True
output_dir = os.path.join(exports["reports"], params["output_dir"])
zones_file = os.path.join(imports["zone_translation"]['home'], params["zones_file"])
# TODO: Comprehension should not be longer than one line
sectors_files = {
name: os.path.join(imports["zone_translation"]['one_to_one'], x)
for name, x in zip(params["sectors_names"], params["sectors_files"])
}
tld_path = os.path.join(imports["home"], params["tld_path"])
cost_path = os.path.join(imports["home"], params["cost_path"])
overwrite = params["overwrite_outputs"]
collate_years = params["collate_years"]
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
for matrix_format in params["matrix_directories"].keys():
matrix_dir = exports[params["matrix_directories"][matrix_format]]
successful = matrix_reporting(
matrix_directory=matrix_dir,
output_dir=output_dir,
trip_origin=params["trip_origin"],
matrix_format=params["matrix_format"],
segments_needed=params["segments_needed"],
zone_file=zones_file,
zones_name=params["zones_name"],
sectors_files=sectors_files,
aggregation_method="sum",
overwrite_dir=overwrite,
tld_path=tld_path,
cost_path=cost_path,
collate_years=collate_years,
)
if not successful:
errors.append([matrix_format, params["segments_needed"]])
overwrite = False
print("Errors:")
print(*errors, sep="\n")
if __name__ == "__main__":
# Run the configuration files to produce the report formats required by
# Power BI
# Controls I/O
scenario = consts.SC04_UZC
iter_num = '3g'
import_home = "I:/"
export_home = "I:/"
model_name = consts.MODEL_NAME
efs_main = ExternalForecastSystem(
model_name=model_name,
iter_num=iter_num,
scenario_name=scenario,
import_home=import_home,
export_home=export_home,
verbose=False
)
# Build path to the dir containing the config files
config_dir = os.path.join(
efs_main.imports['home'],
model_name,
'params'
)
param_fnames = [
'hb_pa.json',
'nhb_pa.json'
]
# ## AGGREGATE OUTPUT DATA FOR REPORTING ## #
for fname in param_fnames:
main(
param_file=os.path.join(config_dir, fname),
imports=efs_main.imports,
exports=efs_main.exports,
model_name=model_name
)