|
| 1 | +#include <cstdio> |
| 2 | +#include <cstring> |
| 3 | +#include <cmath> |
| 4 | +#include <algorithm> |
| 5 | +#include <utility> |
| 6 | +#include <vector> |
| 7 | +#include <queue> |
| 8 | + |
| 9 | +using namespace std; |
| 10 | + |
| 11 | +const int MAXN = 200005; |
| 12 | +const int LOGN = 19; |
| 13 | +int n, m; |
| 14 | + |
| 15 | +struct edge { |
| 16 | + int u, v, w; |
| 17 | + bool operator<(const edge& other) const { |
| 18 | + return w < other.w; |
| 19 | + } |
| 20 | +}; |
| 21 | + |
| 22 | +vector<edge> edges; |
| 23 | + |
| 24 | +int uf[MAXN]; |
| 25 | + |
| 26 | +void init() { |
| 27 | + for (int i = 1; i <= n; ++i) |
| 28 | + uf[i] = i; |
| 29 | +} |
| 30 | + |
| 31 | +int find(int x) { |
| 32 | + int p = uf[x]; |
| 33 | + if (uf[p] != p) |
| 34 | + p = find(p); |
| 35 | + |
| 36 | + return uf[x] = p; |
| 37 | +} |
| 38 | + |
| 39 | +void join(int x, int y) { |
| 40 | + int xr = find(x); |
| 41 | + int yr = find(y); |
| 42 | + if (xr == yr) return; |
| 43 | + |
| 44 | + uf[xr] = yr; |
| 45 | +} |
| 46 | + |
| 47 | +vector<pair<int, int> > tree[MAXN]; |
| 48 | +int parent[MAXN][LOGN]; |
| 49 | +int big[MAXN][LOGN]; |
| 50 | +int depth[MAXN]; |
| 51 | + |
| 52 | +long long find_mst() { |
| 53 | + vector<edge> sorted(edges.begin(), edges.end()); |
| 54 | + sort(sorted.begin(), sorted.end()); |
| 55 | + |
| 56 | + init(); |
| 57 | + long long mst_cost = 0LL; |
| 58 | + for (const edge& edg : sorted) { |
| 59 | + if (find(edg.u) != find(edg.v)) { |
| 60 | + tree[edg.u].push_back({edg.v, edg.w}); |
| 61 | + tree[edg.v].push_back({edg.u, edg.w}); |
| 62 | + join(edg.u, edg.v); |
| 63 | + mst_cost += edg.w; |
| 64 | + } |
| 65 | + } |
| 66 | + |
| 67 | + return mst_cost; |
| 68 | +} |
| 69 | + |
| 70 | +void dfs(int node, int par, int dep) { |
| 71 | + parent[node][0] = par; |
| 72 | + depth[node] = dep; |
| 73 | + for (pair<int, int> child : tree[node]) { |
| 74 | + if (child.first != par) { |
| 75 | + dfs(child.first, node, dep + 1); |
| 76 | + big[child.first][0] = child.second; |
| 77 | + } |
| 78 | + } |
| 79 | +} |
| 80 | + |
| 81 | +void gen_parents() { |
| 82 | + for (int j = 1; j < LOGN; ++j) { |
| 83 | + for (int i = 1; i <= n; ++i) { |
| 84 | + if (parent[i][j - 1] != -1) { |
| 85 | + parent[i][j] = parent[parent[i][j - 1]][j - 1]; |
| 86 | + big[i][j] = max(big[i][j - 1], big[parent[i][j - 1]][j - 1]); |
| 87 | + } |
| 88 | + } |
| 89 | + } |
| 90 | +} |
| 91 | + |
| 92 | +int walk_up(int node, int move) { |
| 93 | + int par = node; |
| 94 | + for (int j = 0, p = 1; par != -1 and p <= move; ++j, p <<= 1) { |
| 95 | + if (move & p) { |
| 96 | + par = parent[par][j]; |
| 97 | + } |
| 98 | + } |
| 99 | + |
| 100 | + return par; |
| 101 | +} |
| 102 | + |
| 103 | +int find_max(int node, int move) { |
| 104 | + int loc = node; |
| 105 | + int val = 0; |
| 106 | + |
| 107 | + for (int j = 0, p = 1; loc != -1 and p <= move; ++j, p <<= 1) { |
| 108 | + if (move & p) { |
| 109 | + val = max(val, big[loc][j]); |
| 110 | + loc = parent[loc][j]; |
| 111 | + } |
| 112 | + } |
| 113 | + |
| 114 | + return val; |
| 115 | +} |
| 116 | + |
| 117 | +int lca(int x, int y) { |
| 118 | + if (depth[x] > depth[y]) |
| 119 | + return lca(y, x); |
| 120 | + if (depth[x] < depth[y]) |
| 121 | + y = walk_up(y, depth[y] - depth[x]); |
| 122 | + |
| 123 | + if (x == y) return x; |
| 124 | + |
| 125 | + int lo = 0; |
| 126 | + int hi = n; |
| 127 | + while (lo + 1 < hi) { |
| 128 | + int mid = (lo + hi) / 2; |
| 129 | + if (walk_up(x, mid) == walk_up(y, mid)) |
| 130 | + hi = mid; |
| 131 | + else |
| 132 | + lo = mid; |
| 133 | + } |
| 134 | + |
| 135 | + return walk_up(x, hi); |
| 136 | +} |
| 137 | + |
| 138 | +int main() { |
| 139 | + scanf("%d %d", &n, &m); |
| 140 | + |
| 141 | + int u, v, w; |
| 142 | + for (int i = 0; i < m; ++i) { |
| 143 | + scanf("%d %d %d", &u, &v, &w); |
| 144 | + |
| 145 | + edges.push_back({u, v, w}); |
| 146 | + } |
| 147 | + |
| 148 | + long long cost = find_mst(); |
| 149 | + memset(parent, -1, sizeof(parent)); |
| 150 | + dfs(1, -1, 0); |
| 151 | + gen_parents(); |
| 152 | + |
| 153 | + for (int i = 0; i < m; ++i) { |
| 154 | + u = edges[i].u; |
| 155 | + v = edges[i].v; |
| 156 | + |
| 157 | + int l = lca(u, v); |
| 158 | + // printf("%d %d %d\n", u, v, l); |
| 159 | + if ((l == u or l == v) and (depth[u] - depth[v] == 1 or depth[v] - depth[u] == 1)) { |
| 160 | + printf("%lld\n", cost); |
| 161 | + } else { |
| 162 | + long long m1 = find_max(u, depth[u] - depth[l]); |
| 163 | + long long m2 = find_max(v, depth[v] - depth[l]); |
| 164 | + |
| 165 | + printf("%lld\n", cost - max(m1, m2) + edges[i].w); |
| 166 | + } |
| 167 | + } |
| 168 | + |
| 169 | + return 0; |
| 170 | +} |
0 commit comments