-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimum.py
356 lines (306 loc) · 13 KB
/
optimum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
import cv2
import numpy as np
import mediapipe as mp
from dataclasses import dataclass
from typing import Dict, List
import json
from tqdm import tqdm
import pandas as pd
from scipy import stats
@dataclass
class AngleStats:
mean: float
std: float
min: float
max: float
confidence_interval: tuple
class YogaAngleAnalyzer:
def __init__(self):
self.mp_pose = mp.solutions.pose
self.pose = self.mp_pose.Pose(
static_image_mode=True,
model_complexity=2,
min_detection_confidence=0.5
)
# Define the angles we want to track
self.angle_definitions = {
# Arm angles
'right_arm': [
self.mp_pose.PoseLandmark.RIGHT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_ELBOW,
self.mp_pose.PoseLandmark.RIGHT_WRIST
],
'left_arm': [
self.mp_pose.PoseLandmark.LEFT_SHOULDER,
self.mp_pose.PoseLandmark.LEFT_ELBOW,
self.mp_pose.PoseLandmark.LEFT_WRIST
],
# Leg angles
'right_leg': [
self.mp_pose.PoseLandmark.RIGHT_HIP,
self.mp_pose.PoseLandmark.RIGHT_KNEE,
self.mp_pose.PoseLandmark.RIGHT_ANKLE
],
'left_leg': [
self.mp_pose.PoseLandmark.LEFT_HIP,
self.mp_pose.PoseLandmark.LEFT_KNEE,
self.mp_pose.PoseLandmark.LEFT_ANKLE
],
# Hip angles
'right_hip': [
self.mp_pose.PoseLandmark.RIGHT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_HIP,
self.mp_pose.PoseLandmark.RIGHT_KNEE
],
'left_hip': [
self.mp_pose.PoseLandmark.LEFT_SHOULDER,
self.mp_pose.PoseLandmark.LEFT_HIP,
self.mp_pose.PoseLandmark.LEFT_KNEE
],
# Back angles
'upper_back': [
self.mp_pose.PoseLandmark.NOSE,
self.mp_pose.PoseLandmark.RIGHT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_HIP
],
'lower_back': [
self.mp_pose.PoseLandmark.RIGHT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_HIP,
self.mp_pose.PoseLandmark.RIGHT_ANKLE
],
# Shoulder angles
'right_shoulder': [
self.mp_pose.PoseLandmark.RIGHT_ELBOW,
self.mp_pose.PoseLandmark.RIGHT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_HIP
],
'left_shoulder': [
self.mp_pose.PoseLandmark.LEFT_ELBOW,
self.mp_pose.PoseLandmark.LEFT_SHOULDER,
self.mp_pose.PoseLandmark.LEFT_HIP
],
# Additional angles
'hip_width': [
self.mp_pose.PoseLandmark.LEFT_HIP,
self.mp_pose.PoseLandmark.RIGHT_HIP,
self.mp_pose.PoseLandmark.RIGHT_KNEE
],
'shoulder_width': [
self.mp_pose.PoseLandmark.LEFT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_ELBOW
],
'torso_twist': [
self.mp_pose.PoseLandmark.LEFT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_HIP
],
'neck_tilt': [
self.mp_pose.PoseLandmark.RIGHT_EAR,
self.mp_pose.PoseLandmark.RIGHT_SHOULDER,
self.mp_pose.PoseLandmark.RIGHT_HIP
],
# Ankle and wrist flexion
'right_ankle_flex': [
self.mp_pose.PoseLandmark.RIGHT_KNEE,
self.mp_pose.PoseLandmark.RIGHT_ANKLE,
self.mp_pose.PoseLandmark.RIGHT_FOOT_INDEX
],
'left_ankle_flex': [
self.mp_pose.PoseLandmark.LEFT_KNEE,
self.mp_pose.PoseLandmark.LEFT_ANKLE,
self.mp_pose.PoseLandmark.LEFT_FOOT_INDEX
],
'right_wrist_flex': [
self.mp_pose.PoseLandmark.RIGHT_ELBOW,
self.mp_pose.PoseLandmark.RIGHT_WRIST,
self.mp_pose.PoseLandmark.RIGHT_INDEX
],
'left_wrist_flex': [
self.mp_pose.PoseLandmark.LEFT_ELBOW,
self.mp_pose.PoseLandmark.LEFT_WRIST,
self.mp_pose.PoseLandmark.LEFT_INDEX
],
# Pelvis and spine
'pelvis_tilt': [
self.mp_pose.PoseLandmark.RIGHT_HIP,
self.mp_pose.PoseLandmark.LEFT_HIP,
self.mp_pose.PoseLandmark.RIGHT_SHOULDER
],
'spine_alignment': [
self.mp_pose.PoseLandmark.NOSE,
self.mp_pose.PoseLandmark.RIGHT_SHOULDER,
self.mp_pose.PoseLandmark.LEFT_HIP
]
}
def calculate_angle(self, p1, p2, p3) -> float:
"""Calculate angle between three points in 3D space"""
a = np.array([p1.x, p1.y, p1.z])
b = np.array([p2.x, p2.y, p2.z])
c = np.array([p3.x, p3.y, p3.z])
ba = a - b
bc = c - b
cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
angle = np.arccos(np.clip(cosine_angle, -1.0, 1.0))
return np.degrees(angle)
def process_image(self, image_path: str) -> Dict[str, float]:
"""Process a single image and return all calculated angles"""
image = cv2.imread(image_path)
if image is None:
return None
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = self.pose.process(image)
if not results.pose_landmarks:
return None
angles = {}
for angle_name, landmarks in self.angle_definitions.items():
try:
angle = self.calculate_angle(
results.pose_landmarks.landmark[landmarks[0].value],
results.pose_landmarks.landmark[landmarks[1].value],
results.pose_landmarks.landmark[landmarks[2].value]
)
angles[angle_name] = angle
except:
angles[angle_name] = None
return angles
def analyze_dataset(self, data_dir: str) -> Dict[str, Dict[str, AngleStats]]:
"""Analyze entire dataset and compute statistics for each pose"""
pose_data = {}
# Process all images
print("Processing images...")
for pose_name in os.listdir(data_dir):
pose_path = os.path.join(data_dir, pose_name)
if not os.path.isdir(pose_path):
continue
pose_angles = {angle_name: [] for angle_name in self.angle_definitions.keys()}
# Process each image in the pose directory
for img_name in tqdm(os.listdir(pose_path), desc=f"Processing {pose_name}"):
if not img_name.lower().endswith(('.png', '.jpg', '.jpeg')):
continue
img_path = os.path.join(pose_path, img_name)
angles = self.process_image(img_path)
if angles is not None:
for angle_name, angle_value in angles.items():
if angle_value is not None:
pose_angles[angle_name].append(angle_value)
# Calculate statistics for each angle
pose_stats = {}
for angle_name, angle_values in pose_angles.items():
if angle_values:
mean = np.mean(angle_values)
std = np.std(angle_values)
ci = stats.t.interval(0.95, len(angle_values)-1, loc=mean, scale=std/np.sqrt(len(angle_values)))
pose_stats[angle_name] = AngleStats(
mean=float(mean),
std=float(std),
min=float(np.min(angle_values)),
max=float(np.max(angle_values)),
confidence_interval=(float(ci[0]), float(ci[1]))
)
pose_data[pose_name] = pose_stats
return pose_data
def generate_report(self, pose_data: Dict[str, Dict[str, AngleStats]], output_file: str):
"""Generate a detailed report of the angle analysis"""
report = []
report.append("# Yoga Pose Angle Analysis Report\n")
for pose_name, pose_stats in pose_data.items():
report.append(f"\n## {pose_name}\n")
report.append("| Angle | Mean | Std Dev | Range | 95% Confidence Interval |")
report.append("|-------|------|---------|--------|------------------------|")
for angle_name, stats in pose_stats.items():
report.append(
f"| {angle_name} | {stats.mean:.1f}° | {stats.std:.1f}° | "
f"{stats.min:.1f}° - {stats.max:.1f}° | "
f"{stats.confidence_interval[0]:.1f}° - {stats.confidence_interval[1]:.1f}° |"
)
# Save report
with open(output_file, 'w') as f:
f.write('\n'.join(report))
# Also save as CSV for easier data analysis
csv_data = []
for pose_name, pose_stats in pose_data.items():
for angle_name, stats in pose_stats.items():
csv_data.append({
'pose': pose_name,
'angle': angle_name,
'mean': stats.mean,
'std': stats.std,
'min': stats.min,
'max': stats.max,
'ci_lower': stats.confidence_interval[0],
'ci_upper': stats.confidence_interval[1]
})
df = pd.DataFrame(csv_data)
df.to_csv(output_file.replace('.md', '.csv'), index=False)
# Save raw data as JSON
json_data = {
pose_name: {
angle_name: vars(stats)
for angle_name, stats in pose_stats.items()
}
for pose_name, pose_stats in pose_data.items()
}
with open(output_file.replace('.md', '.json'), 'w') as f:
json.dump(json_data, f, indent=2)
def visualize_pose(self, image_path: str, output_path: str = None):
"""Visualize the pose landmarks and angles on an image"""
image = cv2.imread(image_path)
if image is None:
return None
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = self.pose.process(image)
if not results.pose_landmarks:
return None
# Draw landmarks
mp_drawing = mp.solutions.drawing_utils
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
self.mp_pose.POSE_CONNECTIONS
)
# Calculate and draw angles
angles = self.process_image(image_path)
if angles:
height, width = image.shape[:2]
for angle_name, angle_value in angles.items():
if angle_value is not None:
# Get middle point of the angle
landmarks = self.angle_definitions[angle_name]
mid_point = results.pose_landmarks.landmark[landmarks[1]]
x = int(mid_point.x * width)
y = int(mid_point.y * height)
# Draw angle value
cv2.putText(
image,
f'{angle_name}: {angle_value:.1f}°',
(x, y),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(255, 255, 255),
2
)
# Convert back to BGR for saving
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if output_path:
cv2.imwrite(output_path, image)
return image
def main():
# Initialize analyzer
analyzer = YogaAngleAnalyzer()
# Set your dataset directory
data_dir = "./yoga_dataset"
# Analyze dataset
pose_data = analyzer.analyze_dataset(data_dir)
# Generate report
analyzer.generate_report(pose_data, "yoga_pose_analysis.md")
# Print some example insights
print("\nExample optimal angles for poses:")
for pose_name, pose_stats in pose_data.items():
print(f"\n{pose_name}:")
for angle_name, stats in pose_stats.items():
print(f" {angle_name}: {stats.mean:.1f}° ± {stats.std:.1f}° "
f"(range: {stats.min:.1f}° - {stats.max:.1f}°)")
if __name__ == "__main__":
main()