AdvancedMH.jl currently provides a robust implementation of random walk Metropolis-Hastings samplers.
Further development aims to provide a suite of adaptive Metropolis-Hastings implementations.
AdvancedMH works by allowing users to define composable Proposal
structs in different formats.
First, construct a DensityModel
, which is a wrapper around the log density function for your inference problem. The DensityModel
is then used in a sample
call.
# Import the package.
+using AdvancedMH
+using Distributions
+using MCMCChains
+
+using LinearAlgebra
+
+# Generate a set of data from the posterior we want to estimate.
+data = rand(Normal(0, 1), 30)
+
+# Define the components of a basic model.
+insupport(θ) = θ[2] >= 0
+dist(θ) = Normal(θ[1], θ[2])
+density(θ) = insupport(θ) ? sum(logpdf.(dist(θ), data)) : -Inf
+
+# Construct a DensityModel.
+model = DensityModel(density)
+
+# Set up our sampler with a joint multivariate Normal proposal.
+spl = RWMH(MvNormal(zeros(2), I))
+
+# Sample from the posterior.
+chain = sample(model, spl, 100000; param_names=["μ", "σ"], chain_type=Chains)
Output:
Object of type Chains, with data of type 100000×3×1 Array{Float64,3}
+
+Iterations = 1:100000
+Thinning interval = 1
+Chains = 1
+Samples per chain = 100000
+internals = lp
+parameters = μ, σ
+
+2-element Array{ChainDataFrame,1}
+
+Summary Statistics
+
+│ Row │ parameters │ mean │ std │ naive_se │ mcse │ ess │ r_hat │
+│ │ Symbol │ Float64 │ Float64 │ Float64 │ Float64 │ Any │ Any │
+├─────┼────────────┼──────────┼──────────┼─────────────┼────────────┼─────────┼─────────┤
+│ 1 │ μ │ 0.156152 │ 0.19963 │ 0.000631285 │ 0.00323033 │ 3911.73 │ 1.00009 │
+│ 2 │ σ │ 1.07493 │ 0.150111 │ 0.000474693 │ 0.00240317 │ 3707.73 │ 1.00027 │
+
+Quantiles
+
+│ Row │ parameters │ 2.5% │ 25.0% │ 50.0% │ 75.0% │ 97.5% │
+│ │ Symbol │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │
+├─────┼────────────┼──────────┼───────────┼──────────┼──────────┼──────────┤
+│ 1 │ μ │ -0.23361 │ 0.0297006 │ 0.159139 │ 0.283493 │ 0.558694 │
+│ 2 │ σ │ 0.828288 │ 0.972682 │ 1.05804 │ 1.16155 │ 1.41349 │
+
Alternatively, you can define your model with the LogDensityProblems.jl
interface:
using LogDensityProblems
+
+# Use a struct instead of `typeof(density)` for sake of readability.
+struct LogTargetDensity end
+
+LogDensityProblems.logdensity(p::LogTargetDensity, θ) = density(θ) # standard multivariate normal
+LogDensityProblems.dimension(p::LogTargetDensity) = 2
+LogDensityProblems.capabilities(::LogTargetDensity) = LogDensityProblems.LogDensityOrder{0}()
+
+sample(LogTargetDensity(), spl, 100000; param_names=["μ", "σ"], chain_type=Chains)
AdvancedMH offers various methods of defining your inference problem. Behind the scenes, a MetropolisHastings
sampler simply holds some set of Proposal
structs. AdvancedMH will return posterior samples in the "shape" of the proposal provided – currently supported methods are Array{Proposal}
, Proposal
, and NamedTuple{Proposal}
. For example, proposals can be created as:
# Provide a univariate proposal.
+m1 = DensityModel(x -> logpdf(Normal(x,1), 1.0))
+p1 = StaticProposal(Normal(0,1))
+c1 = sample(m1, MetropolisHastings(p1), 100; chain_type=Vector{NamedTuple})
+
+# Draw from a vector of distributions.
+m2 = DensityModel(x -> logpdf(Normal(x[1], x[2]), 1.0))
+p2 = StaticProposal([Normal(0,1), InverseGamma(2,3)])
+c2 = sample(m2, MetropolisHastings(p2), 100; chain_type=Vector{NamedTuple})
+
+# Draw from a `NamedTuple` of distributions.
+m3 = DensityModel(x -> logpdf(Normal(x.a, x.b), 1.0))
+p3 = (a=StaticProposal(Normal(0,1)), b=StaticProposal(InverseGamma(2,3)))
+c3 = sample(m3, MetropolisHastings(p3), 100; chain_type=Vector{NamedTuple})
+
+# Draw from a functional proposal.
+m4 = DensityModel(x -> logpdf(Normal(x,1), 1.0))
+p4 = StaticProposal((x=1.0) -> Normal(x, 1))
+c4 = sample(m4, MetropolisHastings(p4), 100; chain_type=Vector{NamedTuple})
Currently there are only two methods of inference available. Static MH simply draws from the prior, with no conditioning on the previous sample. Random walk will add the proposal to the previously observed value. If you are constructing a Proposal
by hand, you can determine whether the proposal is a StaticProposal
or a RandomWalkProposal
using
static_prop = StaticProposal(Normal(0,1))
+rw_prop = RandomWalkProposal(Normal(0,1))
Different methods are easily composeable. One parameter can be static and another can be a random walk, each of which may be drawn from separate distributions.
AdvancedMH.jl implements the interface of AbstractMCMC which means sampling of multiple chains is supported for free:
# Sample 4 chains from the posterior serially, without thread or process parallelism.
+chain = sample(model, spl, MCMCSerial(), 100000, 4; param_names=["μ","σ"], chain_type=Chains)
+
+# Sample 4 chains from the posterior using multiple threads.
+chain = sample(model, spl, MCMCThreads(), 100000, 4; param_names=["μ","σ"], chain_type=Chains)
+
+# Sample 4 chains from the posterior using multiple processes.
+chain = sample(model, spl, MCMCDistributed(), 100000, 4; param_names=["μ","σ"], chain_type=Chains)
AdvancedMH.jl also offers an implementation of MALA if the ForwardDiff
and DiffResults
packages are available.
A MALA
sampler can be constructed by MALA(proposal)
where proposal
is a function that takes the gradient computed at the current sample. It is required to specify an initial sample initial_params
when calling sample
.
# Import the package.
+using AdvancedMH
+using Distributions
+using MCMCChains
+using ForwardDiff
+using StructArrays
+
+using LinearAlgebra
+
+# Generate a set of data from the posterior we want to estimate.
+data = rand(Normal(0, 1), 30)
+
+# Define the components of a basic model.
+insupport(θ) = θ[2] >= 0
+dist(θ) = Normal(θ[1], θ[2])
+density(θ) = insupport(θ) ? sum(logpdf.(dist(θ), data)) : -Inf
+
+# Construct a DensityModel.
+model = DensityModel(density)
+
+# Set up the sampler with a multivariate Gaussian proposal.
+σ² = 0.01
+spl = MALA(x -> MvNormal((σ² / 2) .* x, σ² * I))
+
+# Sample from the posterior.
+chain = sample(model, spl, 100000; initial_params=ones(2), chain_type=StructArray, param_names=["μ", "σ"])
As above, we can define the model with the LogDensityProblems.jl interface. We can implement the gradient of the log density function manually, or use LogDensityProblemsAD.jl
to provide us with the gradient computation used in MALA. Using our implementation of the LogDensityProblems.jl
interface above:
using LogDensityProblemsAD
+model_with_ad = LogDensityProblemsAD.ADgradient(Val(:ForwardDiff), LogTargetDensity())
+sample(model_with_ad, spl, 100000; initial_params=ones(2), chain_type=StructArray, param_names=["μ", "σ"])