-
Notifications
You must be signed in to change notification settings - Fork 219
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
LKJCholesky
does not work with compiled ReverseDiff.jl
#2091
Comments
Fixed by #2097? Run without warning on my end. versioninfoJulia Version 1.10.0-beta3
Commit 404750f8586 (2023-10-03 12:53 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 10 × Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, skylake)
Threads: 8 on 10 virtual cores
Environment:
LD_LIBRARY_PATH = /usr/local/cuda/lib64:
JULIA_NUM_THREADS = 6
JULIA_EDITOR = code |
Are you on master? Because we haven't made a realize with that PR yet |
No, on your branch |
Oh sure, then this will be fixed by #2097 yes |
Fixed by #2097, which is now being released |
I'm still getting some weird behaviour when using I know I made a similar issue about this, but actually the MWE here is enough to reproduce some behaviour that looks weird to me. That is, in the code below, I would expect Am I missing anything obvious here? using Turing, Random, StatsPlots, TuringBenchmarking, Memoization
@model demo() = L ~ LKJCholesky(3, 1.0)
Turing.setadbackend(:reversediff)
Turing.setrdcache(false)
Random.seed!(1234)
chn_rd = sample(demo(), NUTS(), 1000)
Turing.setrdcache(true)
Random.seed!(1234)
chn_rd_compiled = sample(demo(), NUTS(), 1000)
Turing.setadbackend(:forwarddiff)
Random.seed!(1234)
chn_fd = sample(demo(), NUTS(), 1000)
StatsPlots.plot(chn_rd) # looks healthy
StatsPlots.plot(chn_rd_compiled) # looks not great
using TuringBenchmarking
benchmark_model(demo(); check = true, adbackends=[:forwarddiff, :reversediff, :reversediff_compiled]) # no warnings |
Hmmm, yeah this is strange. I get the following: julia> using Random, Turing, ReverseDiff
julia> @model demo() = L ~ LKJCholesky(3, 1.0)
demo (generic function with 2 methods)
julia> Turing.setadbackend(:reversediff)
:reversediff
julia> Turing.setrdcache(false)
false
julia> Random.seed!(1234)
TaskLocalRNG()
julia> chn_rd = sample(demo(), NUTS(), 1000)
┌ Info: Found initial step size
└ ϵ = 0.8125
Sampling 100%|███████████████████████████████████████████████████████████| Time: 0:00:15
Chains MCMC chain (1000×18×1 Array{Float64, 3}):
Iterations = 501:1:1500
Number of chains = 1
Samples per chain = 1000
Wall duration = 16.14 seconds
Compute duration = 16.14 seconds
parameters = L.L[1,1], L.L[2,1], L.L[3,1], L.L[2,2], L.L[3,2], L.L[3,3]
internals = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rhat ess_per_sec
Symbol Float64 Float64 Float64 Float64 Float64 Float64 Float64
L.L[1,1] 1.0000 0.0000 NaN NaN NaN NaN NaN
L.L[2,1] -0.0220 0.5100 0.0149 1108.5225 588.9220 0.9999 68.6817
L.L[3,1] -0.0018 0.4925 0.0134 1301.7727 754.2240 0.9997 80.6551
L.L[2,2] 0.8417 0.1770 0.0082 513.2173 506.4421 0.9993 31.7978
L.L[3,2] 0.0038 0.5100 0.0127 1463.0641 699.8792 1.0006 90.6483
L.L[3,3] 0.6646 0.2369 0.0111 446.5069 698.9634 1.0020 27.6646
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
L.L[1,1] 1.0000 1.0000 1.0000 1.0000 1.0000
L.L[2,1] -0.8724 -0.4387 -0.0179 0.3828 0.8772
L.L[3,1] -0.8948 -0.3826 -0.0162 0.3757 0.8773
L.L[2,2] 0.3821 0.7527 0.9118 0.9802 0.9997
L.L[3,2] -0.8838 -0.4094 -0.0122 0.4311 0.8668
L.L[3,3] 0.1783 0.4838 0.7020 0.8775 0.9914
julia> Turing.setrdcache(true)
true
julia> Random.seed!(1234)
TaskLocalRNG()
julia> chn_rd_compiled = sample(demo(), NUTS(), 1000)
┌ Info: Found initial step size
└ ϵ = 0.8
Sampling 100%|███████████████████████████████████████████████████████████| Time: 0:00:05
Chains MCMC chain (1000×18×1 Array{Float64, 3}):
Iterations = 501:1:1500
Number of chains = 1
Samples per chain = 1000
Wall duration = 5.84 seconds
Compute duration = 5.84 seconds
parameters = L.L[1,1], L.L[2,1], L.L[3,1], L.L[2,2], L.L[3,2], L.L[3,3]
internals = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rhat ess_per_sec
Symbol Float64 Float64 Float64 Float64 Float64 Float64 Float64
L.L[1,1] 1.0000 0.0000 NaN NaN NaN NaN NaN
L.L[2,1] -0.0084 0.4925 0.0324 228.6450 338.8731 1.0121 39.1851
L.L[3,1] -0.0309 0.5025 0.0258 340.1116 282.3064 1.0081 58.2882
L.L[2,2] 0.8551 0.1626 0.0089 370.7538 497.9914 1.0130 63.5396
L.L[3,2] -0.0147 0.4512 0.0227 392.0160 419.2180 1.0097 67.1836
L.L[3,3] 0.7074 0.2068 0.0118 340.1865 475.6237 0.9994 58.3010
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
L.L[1,1] 1.0000 1.0000 1.0000 1.0000 1.0000
L.L[2,1] -0.8647 -0.3878 -0.0117 0.3833 0.8483
L.L[3,1] -0.8775 -0.4332 -0.0412 0.3793 0.8522
L.L[2,2] 0.4263 0.7698 0.9232 0.9847 0.9998
L.L[3,2] -0.8352 -0.3499 -0.0043 0.3450 0.7960
L.L[3,3] 0.2748 0.5634 0.7456 0.8834 0.9902 So it seems the resulting parameter estimates are roughly the same but the ESS is different. Also note that the chosen step-size is slightly different. Compiled ReverseDiff will produce different results if we have if-statements in the computation which relies on the values of the random variables we're inferring, and so I'm wondering if maybe there's a conditional somewhere in the computation graph that is not correctly included. TuringBenchmarking.jl just checks a single value, hence it might work correctly for that particular value. julia> using Test, LogDensityProblems, LogDensityProblemsAD
julia> model = demo();
julia> varinfo = DynamicPPL.link(DynamicPPL.VarInfo(model), model);
julia> f = DynamicPPL.LogDensityFunction(model, varinfo);
julia> f_rd = LogDensityProblemsAD.ADgradient(Turing.Essential.ReverseDiffAD{false}(), deepcopy(f));
julia> f_crd = LogDensityProblemsAD.ADgradient(Turing.Essential.ReverseDiffAD{true}(), deepcopy(f));
julia> # Let's check if they're the same on the input we compiled for.
result_rd = LogDensityProblems.logdensity_and_gradient(f_rd, varinfo[:])
(-2.0957855104582483, [1.4082609718596935, -0.09191446506506586, 0.6847718985562207])
julia> result_crd = LogDensityProblems.logdensity_and_gradient(f_crd, varinfo[:])
(-2.0957855104582483, [1.4082609718596935, -0.09191446506506586, 0.6847718985562207])
julia> @test result_rd[1] ≈ result_crd[1]
Test Passed
julia> @test result_rd[2] ≈ result_crd[2]
Test Passed
julia> # Now with inputs that it was not compiled on.
d = length(varinfo[:]);
julia> x = rand(d);
julia> result_unseen_rd = LogDensityProblems.logdensity_and_gradient(f_rd, x)
(-2.4459590133007008, [-1.870827529402606, -0.17639514549826948, -0.6335288221522503])
julia> result_unseen_crd = LogDensityProblems.logdensity_and_gradient(f_crd, x)
(-2.4459590133007008, [-0.8316199935369052, -0.1968884416775799, -0.6343288727116665])
julia> @test result_unseen_rd[1] ≈ result_unseen_crd[1]
Test Passed
julia> @test result_unseen_rd[2] ≈ result_unseen_crd[2]
Test Failed at REPL[282]:1
Expression: result_unseen_rd[2] ≈ result_unseen_crd[2]
Evaluated: [-1.870827529402606, -0.17639514549826948, -0.6335288221522503] ≈ [-0.8316199935369052, -0.1968884416775799, -0.6343288727116665]
ERROR: There was an error during testing which immediately fails. And so this is likely caused by some conditional somewhere. My immediate question is if this conditional is present in the linking or just the log-prob computation: julia> varinfo = DynamicPPL.VarInfo(model); # without linking
julia> f = DynamicPPL.LogDensityFunction(model, varinfo);
julia> f_rd = LogDensityProblemsAD.ADgradient(Turing.Essential.ReverseDiffAD{false}(), deepcopy(f));
julia> f_crd = LogDensityProblemsAD.ADgradient(Turing.Essential.ReverseDiffAD{true}(), deepcopy(f));
julia> # Let's check if they're the same on the input we compiled for.
result_rd = LogDensityProblems.logdensity_and_gradient(f_rd, varinfo[:])
(-1.6501987419955653, [0.0, 0.0, 0.0, 0.0, 1.0553644429775089, 0.0, 0.0, 0.0, 0.0])
julia> result_crd = LogDensityProblems.logdensity_and_gradient(f_crd, varinfo[:])
(-1.6501987419955653, [0.0, 0.0, 0.0, 0.0, 1.0553644429775089, 0.0, 0.0, 0.0, 0.0])
julia> @test result_rd[1] ≈ result_crd[1]
Test Passed
julia> @test result_rd[2] ≈ result_crd[2]
Test Passed
julia> # Unseen.
x = DynamicPPL.vectorize(LKJCholesky(3, 1.0), model())
9-element Vector{Float64}:
1.0
0.3623020689503904
0.2946552179906151
0.0
0.932060733447272
0.7153149803851709
0.0
0.0
0.6336424712307923
julia> result_unseen_rd = LogDensityProblems.logdensity_and_gradient(f_rd, x)
(-1.6666698929155281, [0.0, 0.0, 0.0, 0.0, 1.072891458801672, 0.0, 0.0, 0.0, 0.0])
julia> result_unseen_crd = LogDensityProblems.logdensity_and_gradient(f_crd, x)
(-1.6666698929155281, [0.0, 0.0, 0.0, 0.0, 1.072891458801672, 0.0, 0.0, 0.0, 0.0])
julia> @test result_unseen_rd[1] ≈ result_unseen_crd[1]
Test Passed
julia> @test result_unseen_rd[2] ≈ result_unseen_crd[2]
Test Passed Okay, so this works nicely while the linked version fails, indicating that it's an issue with the linking itself. Will have a look at this. I'll also make it so that TuringBenchmarking.jl runs the gradient checks on inputs which it is not compiled on so we catch these things too. Manifest(jl_w7AqOd) pkg> st --manifest
Status `/tmp/jl_w7AqOd/Manifest.toml`
⌃ [47edcb42] ADTypes v0.1.6
[621f4979] AbstractFFTs v1.5.0
[80f14c24] AbstractMCMC v4.5.0
[7a57a42e] AbstractPPL v0.6.2
[1520ce14] AbstractTrees v0.4.4
[79e6a3ab] Adapt v3.7.0
[0bf59076] AdvancedHMC v0.5.5
[5b7e9947] AdvancedMH v0.7.5
⌅ [576499cb] AdvancedPS v0.4.3
[b5ca4192] AdvancedVI v0.2.4
[dce04be8] ArgCheck v2.3.0
[4fba245c] ArrayInterface v7.4.11
[a9b6321e] Atomix v0.1.0
[13072b0f] AxisAlgorithms v1.0.1
[39de3d68] AxisArrays v0.4.7
[198e06fe] BangBang v0.3.39
[9718e550] Baselet v0.1.1
[6e4b80f9] BenchmarkTools v1.3.2
[76274a88] Bijectors v0.13.7
⌅ [fa961155] CEnum v0.4.2
[49dc2e85] Calculus v0.5.1
[082447d4] ChainRules v1.56.0
[d360d2e6] ChainRulesCore v1.18.0
[9e997f8a] ChangesOfVariables v0.1.8
[861a8166] Combinatorics v1.0.2
[38540f10] CommonSolve v0.2.4
[bbf7d656] CommonSubexpressions v0.3.0
[34da2185] Compat v4.10.0
[a33af91c] CompositionsBase v0.1.2
[88cd18e8] ConsoleProgressMonitor v0.1.2
[187b0558] ConstructionBase v1.5.4
[a8cc5b0e] Crayons v4.1.1
[9a962f9c] DataAPI v1.15.0
[864edb3b] DataStructures v0.18.15
[e2d170a0] DataValueInterfaces v1.0.0
[244e2a9f] DefineSingletons v0.1.2
[8bb1440f] DelimitedFiles v1.9.1
[b429d917] DensityInterface v0.4.0
[163ba53b] DiffResults v1.1.0
[b552c78f] DiffRules v1.15.1
[31c24e10] Distributions v0.25.102
[ced4e74d] DistributionsAD v0.6.53
[ffbed154] DocStringExtensions v0.9.3
[fa6b7ba4] DualNumbers v0.6.8
[366bfd00] DynamicPPL v0.23.20
[cad2338a] EllipticalSliceSampling v1.1.0
[4e289a0a] EnumX v1.0.4
[e2ba6199] ExprTools v0.1.10
[7a1cc6ca] FFTW v1.7.1
[1a297f60] FillArrays v1.7.0
[59287772] Formatting v0.4.2
[f6369f11] ForwardDiff v0.10.36
[069b7b12] FunctionWrappers v1.1.3
[77dc65aa] FunctionWrappersWrappers v0.1.3
[d9f16b24] Functors v0.4.5
[0c68f7d7] GPUArrays v9.0.0
[46192b85] GPUArraysCore v0.1.5
[34004b35] HypergeometricFunctions v0.3.23
[7869d1d1] IRTools v0.4.11
[22cec73e] InitialValues v0.3.1
[505f98c9] InplaceOps v0.3.0
[a98d9a8b] Interpolations v0.14.7
[8197267c] IntervalSets v0.7.8
[3587e190] InverseFunctions v0.1.12
[41ab1584] InvertedIndices v1.3.0
[92d709cd] IrrationalConstants v0.2.2
[c8e1da08] IterTools v1.8.0
[82899510] IteratorInterfaceExtensions v1.0.0
[692b3bcd] JLLWrappers v1.5.0
[682c06a0] JSON v0.21.4
[63c18a36] KernelAbstractions v0.9.10
[5ab0869b] KernelDensity v0.6.7
[929cbde3] LLVM v6.3.0
[8ac3fa9e] LRUCache v1.5.0
[b964fa9f] LaTeXStrings v1.3.0
[50d2b5c4] Lazy v0.15.1
[1d6d02ad] LeftChildRightSiblingTrees v0.2.0
[6f1fad26] Libtask v0.8.6
[6fdf6af0] LogDensityProblems v2.1.1
[996a588d] LogDensityProblemsAD v1.6.1
[2ab3a3ac] LogExpFunctions v0.3.26
[e6f89c97] LoggingExtras v1.0.3
[c7f686f2] MCMCChains v6.0.3
[be115224] MCMCDiagnosticTools v0.3.7
[e80e1ace] MLJModelInterface v1.9.3
[1914dd2f] MacroTools v0.5.11
[dbb5928d] MappedArrays v0.4.2
[128add7d] MicroCollections v0.1.4
[e1d29d7a] Missings v1.1.0
[872c559c] NNlib v0.9.7
[77ba4419] NaNMath v1.0.2
[86f7a689] NamedArrays v0.10.0
[c020b1a1] NaturalSort v1.0.0
[6fe1bfb0] OffsetArrays v1.12.10
[3bd65402] Optimisers v0.3.1
[bac558e1] OrderedCollections v1.6.2
[90014a1f] PDMats v0.11.28
[69de0a69] Parsers v2.7.2
[aea7be01] PrecompileTools v1.2.0
[21216c6a] Preferences v1.4.1
[08abe8d2] PrettyTables v2.2.8
[33c8b6b6] ProgressLogging v0.1.4
[92933f4c] ProgressMeter v1.9.0
[1fd47b50] QuadGK v2.9.1
[74087812] Random123 v1.6.1
[e6cf234a] RandomNumbers v1.5.3
[b3c3ace0] RangeArrays v0.3.2
[c84ed2f1] Ratios v0.4.5
[c1ae055f] RealDot v0.1.0
[3cdcf5f2] RecipesBase v1.3.4
[731186ca] RecursiveArrayTools v2.38.10
[189a3867] Reexport v1.2.2
[ae029012] Requires v1.3.0
[37e2e3b7] ReverseDiff v1.15.1
[79098fc4] Rmath v0.7.1
[f2b01f46] Roots v2.0.20
[7e49a35a] RuntimeGeneratedFunctions v0.5.12
[0bca4576] SciMLBase v2.4.3
[c0aeaf25] SciMLOperators v0.3.6
[30f210dd] ScientificTypesBase v3.0.0
[efcf1570] Setfield v1.1.1
[ce78b400] SimpleUnPack v1.1.0
[a2af1166] SortingAlgorithms v1.2.0
[dc90abb0] SparseInverseSubset v0.1.1
[276daf66] SpecialFunctions v2.3.1
[171d559e] SplittablesBase v0.1.15
[90137ffa] StaticArrays v1.6.5
[1e83bf80] StaticArraysCore v1.4.2
[64bff920] StatisticalTraits v3.2.0
[82ae8749] StatsAPI v1.7.0
[2913bbd2] StatsBase v0.34.2
[4c63d2b9] StatsFuns v1.3.0
[892a3eda] StringManipulation v0.3.4
[09ab397b] StructArrays v0.6.16
[2efcf032] SymbolicIndexingInterface v0.2.2
[3783bdb8] TableTraits v1.0.1
[bd369af6] Tables v1.11.1
[5d786b92] TerminalLoggers v0.1.7
[9f7883ad] Tracker v0.2.27
[28d57a85] Transducers v0.4.78
[410a4b4d] Tricks v0.1.8
[781d530d] TruncatedStacktraces v1.4.0
[fce5fe82] Turing v0.29.3
[0db1332d] TuringBenchmarking v0.3.3
[013be700] UnsafeAtomics v0.2.1
[d80eeb9a] UnsafeAtomicsLLVM v0.1.3
[efce3f68] WoodburyMatrices v0.5.5
[e88e6eb3] Zygote v0.6.66
[700de1a5] ZygoteRules v0.2.3
[f5851436] FFTW_jll v3.3.10+0
[1d5cc7b8] IntelOpenMP_jll v2023.2.0+0
[dad2f222] LLVMExtra_jll v0.0.26+0
[856f044c] MKL_jll v2023.2.0+0
[efe28fd5] OpenSpecFun_jll v0.5.5+0
[f50d1b31] Rmath_jll v0.4.0+0
[0dad84c5] ArgTools v1.1.1
[56f22d72] Artifacts
[2a0f44e3] Base64
[ade2ca70] Dates
[8ba89e20] Distributed
[f43a241f] Downloads v1.6.0
[7b1f6079] FileWatching
[9fa8497b] Future
[b77e0a4c] InteractiveUtils
[4af54fe1] LazyArtifacts
[b27032c2] LibCURL v0.6.3
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[ca575930] NetworkOptions v1.2.0
[44cfe95a] Pkg v1.9.2
[de0858da] Printf
[9abbd945] Profile
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA v0.7.0
[9e88b42a] Serialization
[1a1011a3] SharedArrays
[6462fe0b] Sockets
[2f01184e] SparseArrays
[10745b16] Statistics v1.9.0
[4607b0f0] SuiteSparse
[fa267f1f] TOML v1.0.3
[a4e569a6] Tar v1.10.0
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
[e66e0078] CompilerSupportLibraries_jll v1.0.5+0
[deac9b47] LibCURL_jll v7.84.0+0
[29816b5a] LibSSH2_jll v1.10.2+0
[c8ffd9c3] MbedTLS_jll v2.28.2+0
[14a3606d] MozillaCACerts_jll v2022.10.11
[4536629a] OpenBLAS_jll v0.3.21+4
[05823500] OpenLibm_jll v0.8.1+0
[bea87d4a] SuiteSparse_jll v5.10.1+6
[83775a58] Zlib_jll v1.2.13+0
[8e850b90] libblastrampoline_jll v5.8.0+0
[8e850ede] nghttp2_jll v1.48.0+0
[3f19e933] p7zip_jll v17.4.0+0
Info Packages marked with ⌃ and ⌅ have new versions available, but those with ⌅ are restricted by
compatibility constraints from upgrading. To see why use `status --outdated -m` |
Ah, I thought we had chainrules for everything relating to the transformation of Though I'm a bit uncertain why this would cause issues.. |
Hmm, this is very strange: I can't seem to reproduce the issue when looking just at the transformation. julia> using Turing, ReverseDiff
julia> dist = LKJCholesky(3, 1.0)
LKJCholesky{Float64}(
d: 3
η: 1.0
uplo: L
)
julia> b = bijector(dist)
Bijectors.VecCholeskyBijector(:L)
julia> binv = inverse(b)
Inverse{Bijectors.VecCholeskyBijector}(Bijectors.VecCholeskyBijector(:L))
julia> x = rand(dist)
LinearAlgebra.Cholesky{Float64, Matrix{Float64}}
L factor:
3×3 LinearAlgebra.LowerTriangular{Float64, Matrix{Float64}}:
1.0 ⋅ ⋅
0.10674 0.994287 ⋅
0.390942 0.661192 0.640304
julia> y = b(x)
3-element Vector{Float64}:
0.10714823845189496
0.4129118569882736
0.9042537275936676
julia> function f(y)
x, logjac = with_logabsdet_jacobian(binv, y)
return logpdf(dist, x) + logjac
end
f (generic function with 1 method)
julia> # ReverseDiff.
f_tape = ReverseDiff.GradientTape(f, (y,))
typename(ReverseDiff.GradientTape)(f)
julia> f_tape_compiled = ReverseDiff.compile(f_tape)
typename(ReverseDiff.CompiledTape)(f)
julia> inputs = (y,);
julia> buffers = (DiffResults.GradientResult(similar(y)),);
julia> cfg = ReverseDiff.GradientConfig(inputs);
julia> ReverseDiff.gradient!(buffers, f_tape, inputs)
(MutableDiffResult(-2.588055647847676, ([-0.32022019679930697, -1.1728269159715612, -1.4367255598238464],)),)
julia> ReverseDiff.gradient!(buffers, f_tape_compiled, inputs)
(MutableDiffResult(-2.588055647847676, ([-0.32022019679930697, -1.1728269159715612, -1.4367255598238464],)),)
julia> # New inputs.
inputs = (randn(length(y)),);
julia> buffers = (DiffResults.GradientResult(similar(y)),);
julia> cfg = ReverseDiff.GradientConfig(inputs);
julia> ReverseDiff.gradient!(buffers, f_tape, inputs)
(MutableDiffResult(-3.7413960226614016, ([-0.15691122445568645, 8.57759603199995, -1.7830917058959441],)),)
julia> ReverseDiff.gradient!(buffers, f_tape_compiled, inputs)
(MutableDiffResult(-3.7413960226614016, ([-0.15691122445568645, 8.57759603199995, -1.7830917058959441],)),) |
Any news on a fix for this issue? |
MWE:
Manifest.toml
The text was updated successfully, but these errors were encountered: