-
Notifications
You must be signed in to change notification settings - Fork 5
/
tableparser.py
321 lines (237 loc) · 14.5 KB
/
tableparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from akf_corelib.df_objectifier import DFObjectifier
from n_dist_keying.database_handler import DatabaseHandler
from ocr_validation.visualization_handler import VisualizationHandler
from ocr_validation.isri_handler import IsriHandler
from os import listdir
from os.path import isfile, join
import os
import shutil
from vocabulary_checker.vocabulary_checker import VocabularyChecker
class TableParser(object):
def __init__(self, config, voter_mode = True):
self._config = config
# give the last element in split path
if voter_mode is True:
dbpath = config.DB_DIR_VOTER
else:
dbpath = config.DB_DIR_READER
self.vocab_checker = None
if config.KEYING_RESULT_VOCABULARY_CORRECTION_POST or config.KEYING_RESULT_VOCABULARY_CORRECTION_VOTE:
try:
# initialize spellchecker, if one of the vote modes is active
self.vocab_checker = VocabularyChecker()
self.vocab_checker.initialize_lines(config.KEYING_RESULT_VC_DICT_PATH,
config.KEYING_RESULT_VC_DICT_REMOVE_SPECIAL_BORDER_CHARS)
self.vocab_checker.initialize_lines(config.KEYING_RESULT_VC_DICT_PATH_2,
config.KEYING_RESULT_VC_DICT_REMOVE_SPECIAL_BORDER_CHARS)
self.vocab_checker.initialize_spellchecker()
except Exception as e:
config.KEYING_RESULT_VOCABULARY_CORRECTION_POST = False
config.KEYING_RESULT_VOCABULARY_CORRECTION_VOTE = False
self._base_db_dir = os.path.basename(os.path.normpath(dbpath))
def delete_output_dir(self):
# delete database directory
if os.path.exists(self._config.OUTPUT_ROOT_PATH):
shutil.rmtree(self._config.OUTPUT_ROOT_PATH)
def create_output_dir(self):
# dcreate database directory
os.makedirs(self._config.OUTPUT_ROOT_PATH)
def create_isri_reports_old(self, filestructs, addendum):
acc_reports = []
wacc_reports = []
db_root_path = ""
for db in filestructs:
files = filestructs[db]
file = files[0]
# assume that each db has different root folder, just take first file for path reference
dbpath = 'sqlite:////' + file.dbpath
dbname = file.dbname
db_root_path = self.get_basic_output_directory(dbpath, addendum)
if os.path.exists(db_root_path):
fp_gen_acc_report, fp_gen_wacc_report = \
self.summarize_accuracy_reports(db_root_path, dbname)
acc_reports.append(fp_gen_acc_report)
wacc_reports.append(fp_gen_wacc_report)
# create big accumulated report
output_root_path = os.path.dirname(db_root_path)
self.summarize_accuracy_report_sums(wacc_reports, acc_reports, output_root_path)
def create_isri_reports(self, databases, filestructs, addendum):
acc_reports = []
wacc_reports = []
db_root_path = ""
for db in databases:
temp = os.path.splitext(db)[0]
db_keyname = os.path.basename(temp)
files = filestructs[db_keyname]
# file = files[0]
# assume that each db has different root folder, just take first file for path reference
dbpath = 'sqlite:////' + db
dbname = db_keyname
db_root_path = self.get_basic_output_directory(dbpath, addendum)
if os.path.exists(db_root_path):
fp_gen_acc_report, fp_gen_wacc_report = \
self.summarize_accuracy_reports(db_root_path, dbname)
acc_reports.append(fp_gen_acc_report)
wacc_reports.append(fp_gen_wacc_report)
# create big accumulated report
output_root_path = os.path.dirname(db_root_path)
self.summarize_accuracy_report_sums(wacc_reports, acc_reports, output_root_path)
def get_basic_output_directory(self, dbdir_abs, addendum):
basename_db_ext = os.path.basename(os.path.normpath(dbdir_abs))
basename_db = os.path.splitext(basename_db_ext)[0] # remove extension
basic_output_dir = self._config.OUTPUT_ROOT_PATH + "/" + self._base_db_dir+"_"+addendum + "/" + basename_db
return basic_output_dir
def parse_a_table(self, dbdir_abs, table):
# basename_db_ext = os.path.basename(os.path.normpath(dbdir_abs))
# basename_db = os.path.splitext(basename_db_ext)[0] # remove extension
additional_created_files = []
predictor = None
if self._config.PREDICTOR_AUFSICHTSRAT_ENABLED:
# care: import statement within condition, cause this causes keras to load
from machine_learning_components.special_character_predictor import SpecialCharPredictor
predictor = SpecialCharPredictor()
predictor.load_prediction_model()
dataframe_wrapper = DFObjectifier(dbdir_abs, table)
database_handler = DatabaseHandler(dataframe_wrapper, self._config.NUMBER_OF_INPUTS, predictor, self.vocab_checker)
ocr_comparison = database_handler.create_ocr_comparison(predictor=predictor)
if self._config.KEYING_RESULT_VOCABULARY_CORRECTION_POST or self._config.KEYING_RESULT_VOCABULARY_CORRECTION_VOTE:
# hand over vocabulary checker if spellchecking is enabled
ocr_comparison.set_vocabulary_checker(self.vocab_checker)
ocr_comparison.sort_set()
# print("Print mean||decision||abbyy||tesseract||ocropus|||| without unspacing-------------------")
# ocr_comparison.print_sets(False)
if self._config.SAVE_INPUT_DATASETS_TO_FILE:
output_path_abbyy = self.get_basic_output_directory(dbdir_abs, "abbyy") + "/" + table + "_abbyy.txt"
output_path_tess = self.get_basic_output_directory(dbdir_abs, "tess") + "/" + table + "_tess.txt"
output_path_ocro = self.get_basic_output_directory(dbdir_abs, "ocro") + "/" + table + "_ocro.txt"
ocr_comparison.save_dataset_to_file(output_path_abbyy, 0, mode_add_linebreaks=False)
ocr_comparison.save_dataset_to_file(output_path_tess, 1, mode_add_linebreaks=False)
ocr_comparison.save_dataset_to_file(output_path_ocro, 2, mode_add_linebreaks=False)
if self._config.WRITE_HOCR:
ocr_comparison.save_dataset_to_hocr(output_path_abbyy, 0, mode_add_linebreaks=False)
ocr_comparison.save_dataset_to_hocr(output_path_tess, 1, mode_add_linebreaks=False)
ocr_comparison.save_dataset_to_hocr(output_path_ocro, 2, mode_add_linebreaks=False)
additional_created_files.append(output_path_abbyy)
additional_created_files.append(output_path_tess)
additional_created_files.append(output_path_ocro)
# ocr_comparison.save_dataset_to_file()
if self._config.DO_N_DIST_KEYING:
print("Doing: N_DIST_KEYING, WORDWISE KEYING: ", self._config.NDIST_USE_WORDWISE_KEYING)
ocr_comparison.do_n_distance_keying(self._config.NDIST_USE_WORDWISE_KEYING) # do the keying, which makes the decision which is the best line for each set
ocr_comparison.print_sets(False)
#ocr_comparison.print_n_distance_keying_results() # print keying results
if self._config.KEYING_RESULT_POSTCORRECTION:
ocr_comparison.do_postcorrection(postcorrect_keying=True)
created_path = self.get_basic_output_directory(dbdir_abs,"ndist_keying") + "/" + table + "_ndist.txt"
ocr_comparison.save_dataset_to_file(created_path, 0, self._config.MODE_ADD_LINEBREAKS, "ndist_keying")
return created_path, additional_created_files
if self._config.DO_MSA_BEST:
ocr_comparison.do_msa_best_new(self._config.MSA_BEST_USE_N_DIST_PIVOT,
self._config.MSA_BEST_USE_LONGEST_PIVOT,
self._config.MSA_BEST_USE_CHARCONFS,
self._config.MSA_BEST_USE_WORDWISE_MSA,
self._config.MSA_BEST_USE_SEARCHSPACE,
self._config.KEYING_RESULT_POSTCORRECTION)
if self._config.KEYING_RESULT_VOCABULARY_CORRECTION_POST:
ocr_comparison.do_vocabulary_correction()
if self._config.KEYING_RESULT_POSTCORRECTION:
ocr_comparison.do_postcorrection(postcorrect_keying=True,
postcorrect_msa=self._config.MSA_BEST_POSTCORRECTION,
postcorrect_ndist=self._config.NDIST_KEYING_POSTCORRECTION)
"""
if self._config.MSA_BEST_USE_WORDWISE_MSA:
# this is the new msa best invocation
ocr_comparison.do_msa_best_new(self._config.MSA_BEST_USE_N_DIST_PIVOT, self._config.MSA_BEST_USE_LONGEST_PIVOT, self._config.MSA_BEST_USE_CHARCONFS, \
self._config.MSA_BEST_USE_WORDWISE_MSA, self._config.MSA_BEST_USE_SEARCHSPACE, self._config.KEYING_RESULT_POSTCORRECTION)
else:
#todo refactor this old stuff
if self._config.MSA_BEST_USE_CHARCONFS is False:
if self._config.MSA_BEST_USE_N_DIST_PIVOT:
print("Doing: DO_MSA_BEST with MSA_BEST_USE_N_DIST_PIVOT")
ocr_comparison.do_msa_best_with_ndist_pivot()
else:
print("Doing: DO_MSA_BEST without NDIST_PIVOT")
ocr_comparison.do_msa_best()
else:
if self._config.MSA_BEST_USE_N_DIST_PIVOT:
print("Doing: DO_MSA_BEST with MSA_BEST_USE_N_DIST_PIVOT and CHARCONFS")
ocr_comparison.do_msa_best_with_ndist_pivot_charconf()
else:
print("Doing: DO_MSA_BEST without NDIST_PIVOT and CHARCONFS")
print("This is not implemented yet")
"""
#ocr_comparison.print_msa_best_results()
# created_path = self._config.OUTPUT_ROOT_PATH+"/"+self._base_db_dir+"//"+basename_db+"//"+table+"_msa_best.txt"
created_path = self.get_basic_output_directory(dbdir_abs,"msa_best") + "/" + table + "_msa_best.txt"
ocr_comparison.save_dataset_to_file(created_path, 0, self._config.MODE_ADD_LINEBREAKS, "msa_best")
if self._config.WRITE_HOCR:
ocr_comparison.save_dataset_to_hocr(created_path, 0, self._config.MODE_ADD_LINEBREAKS, "msa_best")
return created_path, additional_created_files
def create_reduced_file(self, filepath, ignore_whitespace, ignore_emptyline, ignore_tabs):
file = open(filepath, 'r')
#read_data = file.read()
final_data = []
for line in file:
linetocheck = line
if ignore_whitespace:
linetocheck = linetocheck.replace(" ","")
if ignore_tabs:
linetocheck = linetocheck.replace("\t", "")
if ignore_emptyline and not linetocheck.isspace():
final_data.append(linetocheck)
new_filepath_table = filepath + ".red"
file_new = open(new_filepath_table, 'w')
file_new.writelines(final_data)
file_new.close()
file.close()
return new_filepath_table
def validate_table_against_gt(self, filepath_table, filepath_groundtruth, ignore_whitespace=True, ignore_emptyline=True, ignore_tabs=True):
if self._config.DO_ISRI_VAL is True:
isri_handler = IsriHandler()
ignore_whitespace = self._config.ISRI_IGNORE_SPACES
ignore_emptyline = self._config.ISRI_IGNORE_EMPTY_LINES
ignore_tabs = self._config.ISRI_IGNORE_TABS
if ignore_whitespace:
filepath_table = self.create_reduced_file(filepath_table, ignore_whitespace, ignore_emptyline, ignore_tabs)
filepath_groundtruth = self.create_reduced_file(filepath_groundtruth, ignore_whitespace, ignore_emptyline, ignore_tabs)
# Test 'accuracy'
isri_handler.accuracy(filepath_groundtruth, filepath_table, filepath_table+".accreport")
# Test 'wordacc'
isri_handler.wordacc(filepath_groundtruth, filepath_table, None, filepath_table+".waccreport")
def summarize_accuracy_report_sums(self, waccreports, accreports, output_root_path):
if self._config.SUMMARIZE_ISRI_REPORTS is False:
return None, None
basename = os.path.basename(output_root_path)
isri_handler = IsriHandler()
isri_handler.accsum(accreports, output_root_path+"/"+basename+"_complete_summarized_report.accsum")
isri_handler.wordaccsum(waccreports, output_root_path+"/"+basename+"_complete_summarized_report.waccsum")
def summarize_accuracy_reports(self, root_folder, dbname):
if self._config.SUMMARIZE_ISRI_REPORTS is False:
return None, None
isri_handler = IsriHandler()
# isri_handler.accsum()
# isri_handler.wordaccsum()
# isri_handler.groupacc()
onlyfiles = [f for f in listdir(root_folder) if isfile(join(root_folder, f))]
files_waccsum = []
files_accsum = []
for file in onlyfiles:
if file.endswith(".waccreport"):
files_waccsum.append(root_folder+"/"+file)
elif file.endswith(".accreport"):
files_accsum.append(root_folder+"/"+file)
generated_acc_report = root_folder+"/"+dbname+"_summarized_report.accsum"
generated_wacc_report = root_folder+"/"+dbname+"_summarized_report.waccsum"
isri_handler.accsum(files_accsum, generated_acc_report )
isri_handler.wordaccsum(files_waccsum, generated_wacc_report)
return generated_acc_report, generated_wacc_report
def display_stuff(self, path_groundtruth, path_file, firstcall):
pyc_handler = VisualizationHandler()
if firstcall is True:
process = pyc_handler.show_file_comparison_meld(path_groundtruth, path_file)
else:
process = pyc_handler.show_file_comparison_meld(path_groundtruth, path_file, just_add_tab=True)
return process
#testing strange wordaccuracy report production
#pyc_handler.show_file_comparison(FILEPATH_NDIST_RESULT, FILEPATH_MSA_BEST_RESULT)
#pyc_handler.show_file_comparison(FILEPATH_WACCURACY_REPORT_NDIST, FILEPATH_WACCURACY_REPORT_MSA)