-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy path020numpy.ipynb.py
537 lines (385 loc) · 11.8 KB
/
020numpy.ipynb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# ---
# jupyter:
# jekyll:
# display_name: NumPy
# jupytext:
# notebook_metadata_filter: -kernelspec,jupytext,jekyll
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.15.2
# ---
# %% [markdown]
# # NumPy for Performance
# %% [markdown]
# ## NumPy constructors
# %% [markdown]
# We saw previously that NumPy's core type is the `ndarray`, or N-Dimensional Array:
# %%
import numpy as np
np.zeros([3, 4, 2, 5])[2, :, :, 1]
# %% [markdown]
# The real magic of numpy arrays is that most python operations are applied, quickly, on an elementwise basis:
# %%
x = np.arange(0, 256, 4).reshape(8, 8)
# %%
y = np.zeros((8, 8))
# %%
# %%timeit
for i in range(8):
for j in range(8):
y[i][j] = x[i][j] + 10
# %%
x + 10
# %% [markdown]
# Numpy's mathematical functions also happen this way, and are said to be "vectorized" functions.
# %%
np.sqrt(x)
# %% [markdown]
# Numpy contains many useful functions for creating matrices. In our earlier lectures we've seen `linspace` and `arange` for evenly spaced numbers.
# %%
np.linspace(0, 10, 21)
# %%
np.arange(0, 10, 0.5)
# %% [markdown]
# Here's one for creating matrices like coordinates in a grid:
# %%
xmin = -1.5
ymin = -1.0
xmax = 0.5
ymax = 1.0
resolution = 300
xstep = (xmax - xmin) / resolution
ystep = (ymax - ymin) / resolution
ymatrix, xmatrix = np.mgrid[ymin:ymax:ystep, xmin:xmax:xstep]
# %%
print(ymatrix)
# %% [markdown]
# We can add these together to make a grid containing the complex numbers we want to test for membership in the Mandelbrot set.
# %%
values = xmatrix + 1j * ymatrix
# %%
print(values)
# %% [markdown]
# ## Arraywise Algorithms
# %% [markdown]
# We can use this to apply the mandelbrot algorithm to whole *ARRAYS*
# %%
z0 = values
z1 = z0 * z0 + values
z2 = z1 * z1 + values
z3 = z2 * z2 + values
# %%
print(z3)
# %% [markdown]
# So can we just apply our `mandel1` function to the whole matrix?
# %%
def mandel1(position,limit=50):
value = position
while abs(value) < 2:
limit -= 1
value = value**2 + position
if limit < 0:
return 0
return limit
# %%
mandel1(values)
# %% [markdown]
# No. The *logic* of our current routine would require stopping for some elements and not for others.
# %% [markdown]
# We can ask numpy to **vectorise** our method for us:
# %%
mandel2 = np.vectorize(mandel1)
# %%
data5 = mandel2(values)
# %%
from matplotlib import pyplot as plt
# %matplotlib inline
plt.imshow(data5, interpolation='none')
# %% [markdown]
# Is that any faster?
# %%
# %%timeit
data5 = mandel2(values)
# %% [markdown]
# This is not significantly faster. When we use *vectorize* it's just hiding an plain old python for loop under the hood. We want to make the loop over matrix elements take place in the "**C Layer**".
# %% [markdown]
# What if we just apply the Mandelbrot algorithm without checking for divergence until the end:
# %%
def mandel_numpy_explode(position, limit=50):
value = position
while limit > 0:
limit -= 1
value = value**2 + position
diverging = abs(value) > 2
return abs(value) < 2
# %%
data6 = mandel_numpy_explode(values)
# %% [markdown]
# OK, we need to prevent it from running off to $\infty$
# %%
def mandel_numpy(position, limit=50):
value = position
while limit > 0:
limit -= 1
value = value**2 + position
diverging = abs(value) > 2
# Avoid overflow
value[diverging] = 2
return abs(value) < 2
# %%
data6 = mandel_numpy(values)
# %%
# %%timeit
data6 = mandel_numpy(values)
# %%
from matplotlib import pyplot as plt
# %matplotlib inline
plt.imshow(data6, interpolation='none')
# %% [markdown]
# Wow, that was TEN TIMES faster.
# %% [markdown]
# There's quite a few NumPy tricks there, let's remind ourselves of how they work:
# %%
diverging = abs(z3) > 2
z3[diverging] = 2
# %% [markdown]
# When we apply a logical condition to a NumPy array, we get a logical array.
# %%
x = np.arange(10)
y = np.ones([10]) * 5
z = x > y
# %%
x
# %%
y
# %%
print(z)
# %% [markdown]
# Logical arrays can be used to index into arrays:
# %%
x[x>3]
# %%
x[np.logical_not(z)]
# %% [markdown]
# And you can use such an index as the target of an assignment:
# %%
x[z] = 5
x
# %% [markdown]
# Note that we didn't compare two arrays to get our logical array, but an array to a scalar integer -- this was broadcasting again.
# %% [markdown]
# ## More Mandelbrot
# %% [markdown]
# Of course, we didn't calculate the number-of-iterations-to-diverge, just whether the point was in the set.
# %% [markdown]
# Let's correct our code to do that:
#
# %%
def mandel4(position,limit=50):
value = position
diverged_at_count = np.zeros(position.shape)
while limit > 0:
limit -= 1
value = value**2 + position
diverging = abs(value) > 2
first_diverged_this_time = np.logical_and(diverging,
diverged_at_count == 0)
diverged_at_count[first_diverged_this_time] = limit
value[diverging] = 2
return diverged_at_count
# %%
data7 = mandel4(values)
# %%
plt.imshow(data7, interpolation='none')
# %%
# %%timeit
data7 = mandel4(values)
# %% [markdown]
# Note that here, all the looping over mandelbrot steps was in Python, but everything below the loop-over-positions happened in C. The code was amazingly quick compared to pure Python.
# %% [markdown]
# Can we do better by avoiding a square root?
# %%
def mandel5(position, limit=50):
value = position
diverged_at_count = np.zeros(position.shape)
while limit > 0:
limit -= 1
value = value**2 + position
diverging = value * np.conj(value) > 4
first_diverged_this_time = np.logical_and(diverging, diverged_at_count == 0)
diverged_at_count[first_diverged_this_time] = limit
value[diverging] = 2
return diverged_at_count
# %%
# %%timeit
data8 = mandel5(values)
# %% [markdown]
# Probably not worth the time I spent thinking about it!
# %% [markdown]
# ## NumPy Testing
# %% [markdown]
# Now, let's look at calculating those residuals, the differences between the different datasets.
# %%
data8 = mandel5(values)
data5 = mandel2(values)
# %%
np.sum((data8 - data5)**2)
# %% [markdown]
# For our non-numpy datasets, numpy knows to turn them into arrays:
# %%
xmin = -1.5
ymin = -1.0
xmax = 0.5
ymax = 1.0
resolution = 300
xstep = (xmax-xmin)/resolution
ystep = (ymax-ymin)/resolution
xs = [(xmin + (xmax - xmin) * i / resolution) for i in range(resolution)]
ys = [(ymin + (ymax - ymin) * i / resolution) for i in range(resolution)]
data1 = [[mandel1(complex(x, y)) for x in xs] for y in ys]
sum(sum((data1 - data7)**2))
# %% [markdown]
# But this doesn't work for pure non-numpy arrays
# %%
data2 = []
for y in ys:
row = []
for x in xs:
row.append(mandel1(complex(x, y)))
data2.append(row)
# %%
data2 - data1
# %% [markdown]
# So we have to convert to NumPy arrays explicitly:
# %%
sum(sum((np.array(data2) - np.array(data1))**2))
# %% [markdown]
# NumPy provides some convenient assertions to help us write unit tests with NumPy arrays:
# %%
x = [1e-5, 1e-3, 1e-1]
y = np.arccos(np.cos(x))
y
# %%
np.testing.assert_allclose(x, y, rtol=1e-6, atol=1e-20)
# %%
np.testing.assert_allclose(data7, data1)
# %% [markdown]
# ## Arraywise operations are fast
# %% [markdown]
# Note that we might worry that we carry on calculating the mandelbrot values for points that have already diverged.
# %%
def mandel6(position, limit=50):
value = np.zeros(position.shape) + position
calculating = np.ones(position.shape, dtype='bool')
diverged_at_count = np.zeros(position.shape)
while limit > 0:
limit -= 1
value[calculating] = value[calculating]**2 + position[calculating]
diverging_now = np.zeros(position.shape, dtype='bool')
diverging_now[calculating] = value[calculating] * \
np.conj(value[calculating])>4
calculating = np.logical_and(calculating,
np.logical_not(diverging_now))
diverged_at_count[diverging_now] = limit
return diverged_at_count
# %%
data8 = mandel6(values)
# %%
# %%timeit
data8 = mandel6(values)
# %%
plt.imshow(data8, interpolation='none')
# %% [markdown]
# This was **not faster** even though it was **doing less work**
# %% [markdown]
# This often happens: on modern computers, **branches** (if statements, function calls) and **memory access** is usually the rate-determining step, not maths.
# %% [markdown]
# Complicating your logic to avoid calculations sometimes therefore slows you down. The only way to know is to **measure**
# %% [markdown]
# ## Indexing with arrays
# %% [markdown]
# We've been using Boolean arrays a lot to get access to some elements of an array. We can also do this with integers:
# %%
x = np.arange(64)
y = x.reshape([8,8])
y
# %%
y[[2, 5]]
# %%
y[[0, 2, 5], [1, 2, 7]]
# %% [markdown]
# We can use a : to indicate we want all the values from a particular axis:
# %%
y[0:4:2, [0, 2]]
# %% [markdown]
# We can mix array selectors, boolean selectors, :s and ordinary array seqeuencers:
# %%
z = x.reshape([4, 4, 4])
z
# %%
z[:, [1, 3], 0:3]
# %% [markdown]
# We can manipulate shapes by adding new indices in selectors with np.newaxis:
# %%
z[:, np.newaxis, [1, 3], 0].shape
# %% [markdown]
# When we use basic indexing with integers and : expressions, we get a **view** on the matrix so a copy is avoided:
# %%
a = z[:, :, 2]
a[0, 0] = -500
z
# %% [markdown]
# We can also use ... to specify ": for as many as possible intervening axes":
# %%
z[1]
# %%
z[...,2]
# %% [markdown]
# However, boolean mask indexing and array filter indexing always causes a copy.
# %% [markdown]
# Let's try again at avoiding doing unnecessary work by using new arrays containing the reduced data instead of a mask:
# %%
def mandel7(position, limit=50):
positions = np.zeros(position.shape) + position
value = np.zeros(position.shape) + position
indices = np.mgrid[0:values.shape[0], 0:values.shape[1]]
diverged_at_count = np.zeros(position.shape)
while limit > 0:
limit -= 1
value = value**2 + positions
diverging_now = value * np.conj(value) > 4
diverging_now_indices = indices[:, diverging_now]
carry_on = np.logical_not(diverging_now)
value = value[carry_on]
indices = indices[:, carry_on]
positions = positions[carry_on]
diverged_at_count[diverging_now_indices[0,:],
diverging_now_indices[1,:]] = limit
return diverged_at_count
# %%
data9 = mandel7(values)
# %%
plt.imshow(data9, interpolation='none')
# %%
# %%timeit
data9 = mandel7(values)
# %% [markdown]
# Still slower. Probably due to lots of copies -- the point here is that you need to *experiment* to see which optimisations will work. Performance programming needs to be empirical.
# %% [markdown]
# ## Profiling
# %% [markdown]
# We've seen how to compare different functions by the time they take to run. However, we haven't obtained much information about where the code is spending more time. For that we need to use a profiler. IPython offers a profiler through the `%prun` magic. Let's use it to see how it works:
# %%
# %prun mandel7(values)
# %% [markdown]
# `%prun` shows a line per each function call ordered by the total time spent on each of these. However, sometimes a line-by-line output may be more helpful. For that we can use the `line_profiler` package (you need to install it using `pip`). Once installed you can activate it in any notebook by running:
# %%
# %load_ext line_profiler
# %% [markdown]
# And the `%lprun` magic should be now available:
# %%
# %lprun -f mandel7 mandel7(values)
# %% [markdown]
# Here, it is clearer to see which operations are keeping the code busy.