-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgroup.py
116 lines (97 loc) · 4.79 KB
/
group.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
import torch.nn.functional as F
from torch.nn.modules.batchnorm import _BatchNorm
def group_norm(input, group, running_mean, running_var, weight=None, bias=None,
use_input_stats=True, momentum=0.1, eps=1e-5):
r"""Applies Group Normalization for channels in the same group in each data sample in a
batch.
See :class:`~torch.nn.GroupNorm1d`, :class:`~torch.nn.GroupNorm2d`,
:class:`~torch.nn.GroupNorm3d` for details.
"""
if not use_input_stats and (running_mean is None or running_var is None):
raise ValueError('Expected running_mean and running_var to be not None when use_input_stats=False')
b, c = input.size(0), input.size(1)
if weight is not None:
weight = weight.repeat(b)
if bias is not None:
bias = bias.repeat(b)
def _instance_norm(input, group, running_mean=None, running_var=None, weight=None,
bias=None, use_input_stats=None, momentum=None, eps=None):
# Repeat stored stats and affine transform params if necessary
if running_mean is not None:
running_mean_orig = running_mean
running_mean = running_mean_orig.repeat(b)
if running_var is not None:
running_var_orig = running_var
running_var = running_var_orig.repeat(b)
#norm_shape = [1, b * c / group, group]
#print(norm_shape)
# Apply instance norm
input_reshaped = input.contiguous().view(1, int(b * c/group), group, *input.size()[2:])
out = F.batch_norm(
input_reshaped, running_mean, running_var, weight=weight, bias=bias,
training=use_input_stats, momentum=momentum, eps=eps)
# Reshape back
if running_mean is not None:
running_mean_orig.copy_(running_mean.view(b, int(c/group)).mean(0, keepdim=False))
if running_var is not None:
running_var_orig.copy_(running_var.view(b, int(c/group)).mean(0, keepdim=False))
return out.view(b, c, *input.size()[2:])
return _instance_norm(input, group, running_mean=running_mean,
running_var=running_var, weight=weight, bias=bias,
use_input_stats=use_input_stats, momentum=momentum,
eps=eps)
class _GroupNorm(_BatchNorm):
def __init__(self, num_features, num_groups=1, eps=1e-5, momentum=0.1,
affine=False, track_running_stats=False):
self.num_groups = num_groups
self.track_running_stats = track_running_stats
super(_GroupNorm, self).__init__(int(num_features/num_groups), eps,
momentum, affine, track_running_stats)
def _check_input_dim(self, input):
return NotImplemented
def forward(self, input):
self._check_input_dim(input)
return group_norm(
input, self.num_groups, self.running_mean, self.running_var, self.weight, self.bias,
self.training or not self.track_running_stats, self.momentum, self.eps)
class GroupNorm2d(_GroupNorm):
r"""Applies Group Normalization over a 4D input (a mini-batch of 2D inputs
with additional channel dimension) as described in the paper
https://arxiv.org/pdf/1803.08494.pdf
`Group Normalization`_ .
Args:
num_features: :math:`C` from an expected input of size
:math:`(N, C, H, W)`
num_groups:
eps: a value added to the denominator for numerical stability. Default: 1e-5
momentum: the value used for the running_mean and running_var computation. Default: 0.1
affine: a boolean value that when set to ``True``, this module has
learnable affine parameters. Default: ``True``
track_running_stats: a boolean value that when set to ``True``, this
module tracks the running mean and variance, and when set to ``False``,
this module does not track such statistics and always uses batch
statistics in both training and eval modes. Default: ``False``
Shape:
- Input: :math:`(N, C, H, W)`
- Output: :math:`(N, C, H, W)` (same shape as input)
Examples:
>>> # Without Learnable Parameters
>>> m = GroupNorm2d(100, 4)
>>> # With Learnable Parameters
>>> m = GroupNorm2d(100, 4, affine=True)
>>> input = torch.randn(20, 100, 35, 45)
>>> output = m(input)
"""
def _check_input_dim(self, input):
if input.dim() != 4:
raise ValueError('expected 4D input (got {}D input)'
.format(input.dim()))
class GroupNorm3d(_GroupNorm):
"""
Assume the data format is (B, C, D, H, W)
"""
def _check_input_dim(self, input):
if input.dim() != 5:
raise ValueError('expected 5D input (got {}D input)'
.format(input.dim()))