-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_one_gpu.py
559 lines (479 loc) · 21.4 KB
/
train_one_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# -*- coding: utf-8 -*-
"""
train the image encoder and mask decoder
freeze prompt image encoder
"""
# %% setup environment
import numpy as np
import matplotlib.pyplot as plt
import os
join = os.path.join
from tqdm import tqdm
from skimage import transform
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler
import monai
from segment_anything import sam_model_registry
import torch.nn.functional as F
import argparse
import random
from datetime import datetime
import shutil
import glob
import wandb
from torchmetrics.utilities.data import to_categorical
from torchmetrics.utilities.distributed import reduce
from nph_utils.cal_dice import dice_score
# set seeds
torch.manual_seed(2024)
torch.cuda.empty_cache()
# torch.distributed.init_process_group(backend="gloo")
os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([251 / 255, 252 / 255, 30 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="red", facecolor=(1, 1, 1, 0), lw=2)
)
class NpyDataset(Dataset):
def __init__(self, data_root, bbox_shift=20, num_classes =4):
self.data_root = data_root
self.gt_path = join(data_root, "gts")
self.img_path = join(data_root, "imgs")
self.num_classes = num_classes
print("self.gt_path", self.gt_path)
print("self.img_path", self.img_path)
#self.gt_path_files = sorted(
# glob.glob(join(self.gt_path, "**/*.npy"), recursive=True)
#)
img_files = os.listdir(self.img_path)
gt_files = os.listdir(self.gt_path)
#print("all files", all_files)
self.img_path_files = [
os.path.join(self.img_path, file) for file in img_files
if file.endswith('.npy')
]
#print(self.img_path_files)
self.gt_path_files = [
os.path.join(self.gt_path, file) for file in gt_files
if file.endswith('.npy')
]
self.bbox_shift = bbox_shift
print(f"number of images in img_path: {len(self.img_path_files)}")
print(f"number of labels in gt_path: {len(self.gt_path_files)}")
def __len__(self):
return len(self.gt_path_files)
def __getitem__(self, index):
# load npy image (1024, 1024, 3), [0,1]
img_name = os.path.basename(self.img_path_files[index])
gt_pathname = self.gt_path + '/Final_' +img_name
#print("img_name", img_name)
#img_1024 here is the original size - changed code.
img_1024 = np.load(
join(self.img_path, img_name), "r", allow_pickle=True
) # (1024, 1024, 3)
#print("image path name",join(self.img_path, img_name))
#print("gt_path_name", gt_pathname)
# convert the shape to (3, H, W)
#img_1024 = np.transpose(img_1024, (2, 0, 1))
# Preprocessing data.
# Clip values: if greater than 80, set to 80; if below 0, set to 0
img_1024 = np.clip(img_1024, 0, 1)
#print("image range", img_1024.min(), img_1024.max())
gt = np.load(
gt_pathname, "r", allow_pickle=True
) # multiple labels [0, 1,4,5...], (256,256)
#assert img_name == os.path.basename(self.gt_path_files[index]), (
# "img gt name error" + self.gt_path_files[index] + self.npy_files[index]
#)
label_ids = np.unique(gt)[1:]
selected_label=3
gt2D = np.uint8(gt == selected_label) # only one label, (256, 256)
gt2D = gt2D[1, ...]
assert np.all(np.isin(np.unique(gt2D), [0, 1])), "Ground truth should be 0 or 1"
y_indices, x_indices = np.where(gt2D ==1)
#print("x_indices, y_indices ", x_indices, y_indices)
if x_indices.size == 0 or y_indices.size == 0:
x_min, x_max = 10, 502
y_min, y_max = 10, 502
else:
x_min, x_max = np.min(x_indices), np.max(x_indices)
y_min, y_max = np.min(y_indices), np.max(y_indices)
#print("x_min, x_max, y_min, y_max", x_min, x_max, y_min, y_max)
# add perturbation to bounding box coordinates
H, W = gt2D.shape
x_min = max(0, x_min - random.randint(0, self.bbox_shift))
x_max = min(W, x_max + random.randint(0, self.bbox_shift))
y_min = max(0, y_min - random.randint(0, self.bbox_shift))
y_max = min(H, y_max + random.randint(0, self.bbox_shift))
bboxes = np.array([x_min, y_min, x_max, y_max])
# Fix for now
bboxes = np.array([10, 10, 502, 502])
return (
torch.tensor(img_1024).float(),
torch.tensor(gt[None, 1, :, :]).long(),
torch.tensor(bboxes).float(),
img_name,
)
# %% set up parser
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--tr_npy_path",
type=str,
default='/data/home/umang/Vader_umang/Seg_models/data/CTScans/preprocessed_RGB',
help="path to training npy files; two subfolders: gts and imgs",
)
parser.add_argument("-task_name", type=str, default="MedSAM-ViT-B")
parser.add_argument("-model_type", type=str, default="vit_b")
parser.add_argument(
"-checkpoint", type=str, default="/data/home/umang/Vader_umang/Seg_models/MedSAM/sam_vit_b_01ec64.pth")
parser.add_argument('-device', type=str, default='cuda:7')
parser.add_argument(
"--load_pretrain", type=bool, default=True, help="load pretrain model"
)
parser.add_argument("-pretrain_model_path", type=str, default="")
parser.add_argument("-work_dir", type=str, default="./work_dir")
parser.add_argument("-checkpoint_dir", type=str, default="./checkpoint_dir")
# train
parser.add_argument("-num_epochs", type=int, default=1000)
parser.add_argument("-batch_size", type=int, default=2)
parser.add_argument("-num_workers", type=int, default=0)
# Optimizer parameters
parser.add_argument(
"-weight_decay", type=float, default=0.01, help="weight decay (default: 0.01)"
)
parser.add_argument(
"-lr", type=float, default=0.0001, metavar="LR", help="learning rate (absolute lr)"
)
parser.add_argument(
"-use_wandb", type=bool, default=False, help="use wandb to monitor training"
)
parser.add_argument("-use_amp", action="store_true", default=False, help="use amp")
parser.add_argument(
"--resume", type=str, default="", help="Resuming training from checkpoint"
)
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--num_classes", type=int, default="4")
parser.add_argument("--img_size", type=int, default=512)
parser.add_argument("--include_bg", type=bool, default=False, help='include bacground for seg loss calculation')
parser.add_argument("--dice_param", type=float, default=0.8, help="ratio of dice loss to ce loss")
parser.add_argument("--train_split_ratio", type= float, default=0.75, help="train test split ratio")
args = parser.parse_args()
# Define parameters for the run name
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
run_name = f"{args.task_name}_{args.model_type}_{timestamp}"
if args.use_wandb:
wandb.login()
wandb.init(
project=args.task_name,
name=run_name,
config={
"lr": args.lr,
"batch_size": args.batch_size,
"data_path": args.tr_npy_path,
"model_type": args.model_type,
"learning_rate": args.lr
},
)
# %% set up model for training
run_id = datetime.now().strftime("%Y%m%d-%H%M")
model_save_path = join(args.checkpoint_dir, args.task_name + "-" + run_id)
torch.cuda.empty_cache()
print(torch.cuda.device_count()) # Number of GPUs available
for i in range(torch.cuda.device_count()):
print(f"Device {i}: {torch.cuda.get_device_name(i)}")
device = torch.device("cuda:"+args.device)
print("device:", device)
# %% set up model
class MedSAM(nn.Module):
def __init__(
self,
image_encoder,
mask_decoder,
prompt_encoder,
):
super().__init__()
self.image_encoder = image_encoder
self.mask_decoder = mask_decoder
self.prompt_encoder = prompt_encoder
# freeze prompt encoder
#for param in self.mask_decoder.parameters():
# param.requires_grad = False
for param in self.prompt_encoder.parameters():
param.requires_grad = False
def forward(self, image, box):
# print("image shape", image.shape)
image_embedding = self.image_encoder(image) # (B, 256, 64, 64)
# do not compute gradients for prompt encoder
with torch.no_grad():
box_torch = torch.as_tensor(box, dtype=torch.float32, device=image.device)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :] # (B, 1, 4)
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_masks, iou_pred = self.mask_decoder(
image_embeddings=image_embedding, # (B, 256, 64, 64)
image_pe=self.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 256)
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64)
multimask_output=True,
)
ori_res_masks = F.interpolate(
low_res_masks,
size=(image.shape[2], image.shape[3]),
mode="bilinear",
align_corners=False,
)
return ori_res_masks
def main():
# sanity test of dataset class
tr_dataset = NpyDataset(args.tr_npy_path, args.num_classes)
tr_dataloader = DataLoader(tr_dataset, batch_size=8, shuffle=True)
for step, (image, gt, bboxes, names_temp) in enumerate(tr_dataloader):
print(image.shape, gt.shape, bboxes.shape)
#print("image range", image.min().item(), image.max().item())
# show the example
_, axs = plt.subplots(1, 2, figsize=(25, 25))
idx = random.randint(0, 7)
selected_label =3
gt2D = np.uint8(gt == selected_label) # only one label, (256, 256)
axs[0].imshow(image[idx].cpu().permute(1, 2, 0).numpy())
show_mask(gt2D[idx], axs[0])
print("bboxes", bboxes[idx])
show_box(bboxes[idx].numpy(), axs[0])
axs[0].axis("off")
# set title
axs[0].set_title(names_temp[idx])
idx = random.randint(0, 7)
selected_label =3
gt2D = np.uint8(gt == selected_label) # only one label, (256, 256)
axs[1].imshow(image[idx].cpu().permute(1, 2, 0).numpy())
show_mask(gt2D[idx], axs[1])
print("bboxes", bboxes[idx])
show_box(bboxes[idx].numpy(), axs[1])
axs[1].axis("off")
# set title
axs[1].set_title(names_temp[idx])
# plt.show()
plt.subplots_adjust(wspace=0.01, hspace=0)
plt.savefig("./data_sanitycheck.png", bbox_inches="tight", dpi=300)
plt.close()
break
os.makedirs(model_save_path, exist_ok=True)
shutil.copyfile(
__file__, join(model_save_path, run_id + "_" + os.path.basename(__file__))
)
sam_model = sam_model_registry[args.model_type](image_size=args.img_size,
num_classes=args.num_classes,
checkpoint=args.checkpoint,
pixel_mean=[0, 0, 0],
pixel_std=[1, 1, 1])
medsam_model = MedSAM(
image_encoder= sam_model.image_encoder,
mask_decoder= sam_model.mask_decoder,
prompt_encoder= sam_model.prompt_encoder,
).to(device)
medsam_model.train()
print(
"Number of total parameters: ",
sum(p.numel() for p in medsam_model.parameters()),
) # 93735472
print(
"Number of trainable parameters: ",
sum(p.numel() for p in medsam_model.parameters() if p.requires_grad),
) # 93729252
img_mask_encdec_params = list(medsam_model.image_encoder.parameters()) + list(
medsam_model.mask_decoder.parameters()
)
optimizer = torch.optim.AdamW(
img_mask_encdec_params, lr=args.lr, weight_decay=args.weight_decay
)
print(
"Number of image encoder and mask decoder parameters: ",
sum(p.numel() for p in img_mask_encdec_params if p.requires_grad),
) # 93729252
# %% train
num_epochs = args.num_epochs
iter_num = 0
losses = []
seg_losses =[]
ce_losses =[]
mean_dice_scores =[]
best_loss = 1e10
train_dataset = NpyDataset(args.tr_npy_path, args.num_classes)
# Calculate the number of training and validation samples
num_train = int(len(train_dataset))
# Create indices for training and validation
indices = list(range(len(train_dataset)))
train_indices = indices[:num_train]
valid_indices = indices[num_train:]
print("Total number of samples: ", len(train_dataset))
print("Number of training samples: ", len(train_indices))
# Create samplers
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(valid_indices)
train_dataloader = DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
sampler= train_sampler,
pin_memory=True,
)
valid_dataloader = DataLoader(
train_dataset,
batch_size=args.batch_size,
sampler=valid_sampler,
num_workers=args.num_workers,
pin_memory=True,
)
start_epoch = 0
if args.resume is not None:
if os.path.isfile(args.resume):
## Map model to be loaded to specified single GPU
checkpoint = torch.load(args.resume, map_location=device)
start_epoch = checkpoint["epoch"] + 1
medsam_model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
if args.use_amp:
scaler = torch.cuda.amp.GradScaler()
# Dice score segmentation loss.
seg_loss = monai.losses.DiceLoss(sigmoid=True, squared_pred=True, to_onehot_y=False, reduction="mean", include_background = True)
# cross entropy loss
ce_loss = nn.BCEWithLogitsLoss(reduction="mean")
dice_param = args.dice_param
for epoch in range(start_epoch, num_epochs):
epoch_loss = 0
epoch_seg_loss = 0
epoch_ce_loss = 0
dice_scores = [[] for _ in range(args.num_classes+1)]
for step, (image, gt2D, boxes, _) in enumerate(tqdm(train_dataloader)):
optimizer.zero_grad()
boxes_np = boxes.detach().cpu().numpy()
image, gt2D = image.to(device), gt2D.to(device)
if args.use_amp:
## AMP - not using for now
with torch.autocast(device_type="cuda:7", dtype=torch.float32):
medsam_pred = medsam_model(image, boxes_np)
loss = dice_param*seg_loss(medsam_pred, gt2D) \
+ (1-dice_param)*ce_loss(medsam_pred, gt2D.float())
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
medsam_pred = medsam_model(image, boxes_np)
#print("medsam pred shape", medsam_pred.shape)
gt2D =gt2D.squeeze(dim=1) # becomes [B,H,W]
# Convert ground truth to one-hot format
gt2D_one_hot = F.one_hot(gt2D, num_classes=args.num_classes + 1).permute(0, 3, 1, 2).float()
# Select only the relevant classes for loss calculation
# Create mask for relevant classes (excluding background class index 0)
relevant_classes_mask = gt2D_one_hot[:, 1:, :, :].float() # Exclude background channel
#print("relevant classes at dim 1 example", relevant_classes_mask[:,:,250,250])
# Ensure preds and gt2D_one_hot align for relevant classes (excluding background here)
# Compute Dice loss. Here the computation is done considering that background is already excluded
# Relevant classes mask is one hot encoding containing non-bavkgorund classes.
# Medsam pred only contains logits for all classes. classes.
# So include_bg is set True here because class 0 in the
# computation here is ventricles - orginally class1.
segmentation_loss = seg_loss(medsam_pred[:, 1:, :, :], relevant_classes_mask)
#segmentation_loss = seg_loss(medsam_pred, gt2D_expanded)
# Cross entropy on all classes.
cross_entropy_loss = ce_loss(medsam_pred, gt2D_one_hot)
loss = dice_param * segmentation_loss + (1-dice_param)*cross_entropy_loss
#print("seg loss, ce_loss, loss", segmentation_loss, cross_entropy_loss, loss)
loss.backward()
optimizer.step()
optimizer.zero_grad()
#print("medsam pred unique gt2D unique", np.unique(torch.sigmoid(medsam_pred).detach().cpu().numpy()), np.unique(gt2D.detach().cpu().numpy()))
# Compute Dice scores
with torch.no_grad():
pred_probs = torch.sigmoid(medsam_pred) # Get probabilities
dice_scores_batch, mean_dice_score = dice_score(pred_probs, gt2D, bg=True)
for cls in range(args.num_classes+1):
dice_scores[cls].append(dice_scores_batch[cls].item()) # Store individual Dice score for the batch
mean_dice_scores.append(mean_dice_score.item()) # Store average Dice score for the batch
print("dice_scores_batch", dice_scores_batch)
epoch_seg_loss += segmentation_loss.item()
epoch_ce_loss += cross_entropy_loss.item()
epoch_loss += loss.item()
iter_num += 1
print("total epoch loss", epoch_loss)
epoch_seg_loss /= step
epoch_ce_loss /= step
epoch_loss /= step
losses.append(epoch_loss)
seg_losses.append(seg_loss)
ce_losses.append(ce_loss)
if args.use_wandb:
wandb.log({"epoch_loss per slice ": epoch_loss})
wandb.log({"segemntation epoch_loss per slice": epoch_seg_loss})
wandb.log({"CE epoch_loss per slice": epoch_ce_loss})
wandb.log({"mean_dice_scores per slice for class 1": np.mean(dice_scores[1])})
wandb.log({"mean_dice_scores per slice for class 2": np.mean(dice_scores[2])})
wandb.log({"mean_dice_scores per slice for class 3": np.mean(dice_scores[3])})
wandb.log({"mean_dice_scores per slice for class 4": np.mean(dice_scores[4])})
wandb.log({"mean_dice_scores per slice every epoch": np.mean(mean_dice_scores)}) # Log the latest Dice score
#wandb.log({"ALL_dice_scores per slice": dice_scores[-1]}) # Log the latest Dice score
print(
f'Time: {datetime.now().strftime("%Y%m%d-%H%M")}, Epoch: {epoch}, Seg Loss: {epoch_seg_loss}, CE_Loss: {epoch_ce_loss}, Loss: {epoch_loss}, 'f'Dice Score: {np.mean(dice_scores, axis=1)}')
# Save the latest model
checkpoint = {
"model": medsam_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
torch.save(checkpoint, join(model_save_path, args.task_name+"_model_latest.pth"))
# Save the best model if applicable
if epoch_loss < best_loss:
best_loss = epoch_loss
checkpoint = {
"model": medsam_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
torch.save(checkpoint, join(model_save_path, args.task_name+"_model_best.pth"))
# Save checkpoint every 10 epochs
if (epoch + 1) % 10 == 0:
checkpoint = {
"model": medsam_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
}
torch.save(checkpoint, join(model_save_path, args.task_name+f"_model_epoch_{epoch + 1}.pth"))
# Ensure lengths match
assert len(losses) == len(seg_losses) == len(ce_losses), "All loss lists must be of the same length."
# Plotting all three losses
plt.figure(figsize=(10, 6))
plt.plot(losses, label="Total Loss", color="blue")
plt.plot(seg_losses, label="Dice Segmentation Loss", color="green")
plt.plot(ce_losses, label="Cross Entropy Loss", color="red")
#plt.plot(dice_scores, label="Dice Score for all classes", color="orange")
plt.title("Losses Over Epochs")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend()
plt.grid(True)
# Save the figure
plt.savefig(join(model_save_path, args.task_name + "_train_loss.png"))
plt.close()
if __name__ == "__main__":
main()
# %%