-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·196 lines (181 loc) · 8.29 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import numpy as np
import torch
from medpy import metric
from scipy.ndimage import zoom
import torch.nn as nn
import SimpleITK as sitk
import torch.nn.functional as F
import imageio
from einops import repeat
from icecream import ic
class Focal_loss(nn.Module):
def __init__(self, alpha=0.25, gamma=2, num_classes=3, size_average=True):
super(Focal_loss, self).__init__()
self.size_average = size_average
if isinstance(alpha, list):
assert len(alpha) == num_classes
print(f'Focal loss alpha={alpha}, will assign alpha values for each class')
self.alpha = torch.Tensor(alpha)
else:
assert alpha < 1
print(f'Focal loss alpha={alpha}, will shrink the impact in background')
self.alpha = torch.zeros(num_classes)
self.alpha[0] = alpha
self.alpha[1:] = 1 - alpha
self.gamma = gamma
self.num_classes = num_classes
def forward(self, preds, labels):
"""
Calc focal loss
:param preds: size: [B, N, C] or [B, C], corresponds to detection and classification tasks [B, C, H, W]: segmentation
:param labels: size: [B, N] or [B] [B, H, W]: segmentation
:return:
"""
self.alpha = self.alpha.to(preds.device)
preds = preds.permute(0, 2, 3, 1).contiguous()
preds = preds.view(-1, preds.size(-1))
B, H, W = labels.shape
assert B * H * W == preds.shape[0]
assert preds.shape[-1] == self.num_classes
preds_logsoft = F.log_softmax(preds, dim=1) # log softmax
preds_softmax = torch.exp(preds_logsoft) # softmax
preds_softmax = preds_softmax.gather(1, labels.view(-1, 1))
preds_logsoft = preds_logsoft.gather(1, labels.view(-1, 1))
alpha = self.alpha.gather(0, labels.view(-1))
loss = -torch.mul(torch.pow((1 - preds_softmax), self.gamma),
preds_logsoft) # torch.low(1 - preds_softmax) == (1 - pt) ** r
loss = torch.mul(alpha, loss.t())
if self.size_average:
loss = loss.mean()
else:
loss = loss.sum()
return loss
class DiceLoss(nn.Module):
def __init__(self, n_classes):
super(DiceLoss, self).__init__()
self.n_classes = n_classes
def _one_hot_encoder(self, input_tensor):
tensor_list = []
for i in range(self.n_classes):
temp_prob = input_tensor == i # * torch.ones_like(input_tensor)
tensor_list.append(temp_prob.unsqueeze(1))
output_tensor = torch.cat(tensor_list, dim=1)
return output_tensor.float()
def _dice_loss(self, score, target):
target = target.float()
smooth = 1e-5
intersect = torch.sum(score * target)
y_sum = torch.sum(target * target)
z_sum = torch.sum(score * score)
loss = (2 * intersect + smooth) / (z_sum + y_sum + smooth)
loss = 1 - loss
return loss
def forward(self, inputs, target, weight=None, softmax=False):
if softmax:
inputs = torch.softmax(inputs, dim=1)
target = self._one_hot_encoder(target)
print("inputs shape, target shape", inputs.shape, target.shape)
if weight is None:
weight = [1] * self.n_classes
assert inputs.size() == target.size(), 'predict {} & target {} shape do not match'.format(inputs.size(),
target.size())
class_wise_dice = []
loss = 0.0
for i in range(0, self.n_classes):
dice = self._dice_loss(inputs[:, i], target[:, i])
class_wise_dice.append(1.0 - dice.item())
loss += dice * weight[i]
return loss / self.n_classes
def calculate_metric_percase(pred, gt):
pred[pred > 0] = 1
gt[gt > 0] = 1
if pred.sum() > 0 and gt.sum() > 0:
dice = metric.binary.dc(pred, gt)
hd95 = metric.binary.hd95(pred, gt)
return dice, hd95
elif pred.sum() > 0 and gt.sum() == 0:
return 1, 0
else:
return 0, 0
def test_single_volume(image, label, net, classes, multimask_output, patch_size=[256, 256], input_size=[224, 224],
test_save_path=None, case=None, z_spacing=1):
image, label = image.squeeze(0).cpu().detach().numpy(), label.squeeze(0).cpu().detach().numpy()
if len(image.shape) == 3:
prediction = np.zeros_like(label)
for ind in range(image.shape[0]):
slice = image[ind, :, :]
x, y = slice.shape[0], slice.shape[1]
if x != input_size[0] or y != input_size[1]:
slice = zoom(slice, (input_size[0] / x, input_size[1] / y), order=3) # previous using 0
new_x, new_y = slice.shape[0], slice.shape[1] # [input_size[0], input_size[1]]
if new_x != patch_size[0] or new_y != patch_size[1]:
slice = zoom(slice, (patch_size[0] / new_x, patch_size[1] / new_y), order=3) # previous using 0, patch_size[0], patch_size[1]
inputs = torch.from_numpy(slice).unsqueeze(0).unsqueeze(0).float().cuda()
inputs = repeat(inputs, 'b c h w -> b (repeat c) h w', repeat=3)
net.eval()
with torch.no_grad():
outputs = net(inputs, multimask_output, patch_size[0])
output_masks = outputs['masks']
out = torch.argmax(torch.softmax(output_masks, dim=1), dim=1).squeeze(0)
out = out.cpu().detach().numpy()
out_h, out_w = out.shape
if x != out_h or y != out_w:
pred = zoom(out, (x / out_h, y / out_w), order=0)
else:
pred = out
prediction[ind] = pred
# only for debug
# if not os.path.exists('/output/images/pred'):
# os.makedirs('/output/images/pred')
# if not os.path.exists('/output/images/label'):
# os.makedirs('/output/images/label')
# assert prediction.shape[0] == label.shape[0]
# for i in range(label.shape[0]):
# imageio.imwrite(f'/output/images/pred/pred_{i}.png', prediction[i])
# imageio.imwrite(f'/output/images/label/label_{i}.png', label[i])
# temp = input('kkpsa')
else:
x, y = image.shape[-2:]
if x != patch_size[0] or y != patch_size[1]:
image = zoom(image, (patch_size[0] / x, patch_size[1] / y), order=3)
inputs = torch.from_numpy(image).unsqueeze(
0).unsqueeze(0).float().cuda()
inputs = repeat(inputs, 'b c h w -> b (repeat c) h w', repeat=3)
net.eval()
with torch.no_grad():
outputs = net(inputs, multimask_output, patch_size[0])
output_masks = outputs['masks']
out = torch.argmax(torch.softmax(output_masks, dim=1), dim=1).squeeze(0)
prediction = out.cpu().detach().numpy()
if x != patch_size[0] or y != patch_size[1]:
prediction = zoom(prediction, (x / patch_size[0], y / patch_size[1]), order=0)
metric_list = []
for i in range(1, classes + 1):
metric_list.append(calculate_metric_percase(prediction == i, label == i))
if test_save_path is not None:
img_itk = sitk.GetImageFromArray(image.astype(np.float32))
prd_itk = sitk.GetImageFromArray(prediction.astype(np.float32))
lab_itk = sitk.GetImageFromArray(label.astype(np.float32))
img_itk.SetSpacing((1, 1, z_spacing))
prd_itk.SetSpacing((1, 1, z_spacing))
lab_itk.SetSpacing((1, 1, z_spacing))
sitk.WriteImage(prd_itk, test_save_path + '/' + case + "_pred.nii.gz")
sitk.WriteImage(img_itk, test_save_path + '/' + case + "_img.nii.gz")
sitk.WriteImage(lab_itk, test_save_path + '/' + case + "_gt.nii.gz")
return metric_list
def getStat(train_data):
print('Compute mean and variance for training data.')
train_loader = torch.utils.data.DataLoader(
train_data, batch_size=1, shuffle=False, num_workers=0,
pin_memory=True)
mean = torch.zeros(3)
std = torch.zeros(3)
for sample in train_loader:
X = sample['image']
for d in range(3):
mean[d] += X[:, d, :, :].mean()
std[d] += X[:, d, :, :].std()
mean.div_(len(train_data))
std.div_(len(train_data))
return list(mean.numpy()), list(std.numpy())